• Title/Summary/Keyword: fan characteristics

Search Result 771, Processing Time 0.028 seconds

A Study on the Performance Characteristics of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴 성능 특성에 관한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.9-15
    • /
    • 2005
  • This paper presents an experimental and numerical study on the overall performance and local flow characteristics of sirocco fan in a range hood. Measurement of overall performance for sirocco fans were conducted based on AMCA standard 210. The effects of flow blockages due to the motor inside the fan on the fan performance were investigated by experimentally and numerically and the results were compared with each other. The numerical and experimental results show the inlet flow blockage reduces the performance (ie. fan static pressure, design flow rate, maximum efficiency and free delivery flow rate) of fan. It is found that the blockage makes the flow field highly non-uniform through the blade and cause the efficiency decrement.

A Study on the Flow and Cooling Characteristics with the Inlet Blockage of a Fan-Sink (홴싱크의 입구 봉쇄에 따른 유동 및 냉각 특성에 관한 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Yun, Jae-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.83-88
    • /
    • 2004
  • In this study, the flow and thermal performance of the heat sink and fan-sink were experimentally studied to predict the operating condition of the fan-sink. The experiments of the flow and thermal resistance of the heat sink with various inlet blockage, which were occurred by the shapes of the axial fans, were conducted for the proof of the effects of the inlet blockages. The greater the inlet blockage of the heat sink, the higher the pressure drop and lower the thermal resistance of the heat sink will be. The operating point of the fan-sink was predicted by the pressure drop curve with the inlet blockage, which was corresponded to the selected fan and the fan performance curve, and verified by the performance test of the fan-sink. The predicted operating point of the fan-sink had good agreement with the result of the performance test of the fan-sink within $0.7\%$ of the volume flow rates. Measured thermal resistance of the fan-sink was equivalent to that of the heat sink with the same inlet blockage of the fan-sink. It was shown that the heat transfer characteristics of the heat sink were influenced by the flow interaction between the selected fan and the heat sink. To improve the thermal resistance of the heat sink, it is necessary to consider appropriate flow patterns of the fan outlet entering into the heat sink.

  • PDF

LDA Measurements on the Turbulent Flow Characteristics of a Small-Sized Axial Fan (소형 축류홴의 난류유동 특성치에 대한 LDA 측정)

  • Kim, Jang-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.371-376
    • /
    • 2001
  • The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as $\varphi=0.1$, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except $\varphi=0.1$ and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at $\varphi=0.1$ show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  • PDF

An Experimental Study on the Influences of Some Basic Design Parameters on the Performance Characteristics of the Cross-Flow Fan System in Air-Conditioner (에어컨용 직교류홴 시스템의 성능특성에 대한 기본적 설계변수의 영향에 관한 실험적 연구)

  • Koo, Hyoung Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.695-702
    • /
    • 1999
  • A cross-flow fan which constitutes a fan-duct system with a stabilizer and a scroll-casing is widely used in many air-ventilating and air-conditioning devices. The cross-flow fan system has many design parameters which have crucial influence on the performance and the noise characteristics of the devices, which means many difficulties during the design stage of the devices and the general design guide has not sufficiently established yet. This study presents the experimental results of the parameter investigation of some chosen design parameter values, which are the shapes of the stabilizers, the profiles of the scroll casing part, and the diffusion angles of the flow exit. The results are expressed by the varying performance characteristics with the values of the parameters. They are found to have considerable effects on the system performance and should be considered with care in the design stage. Finally some helpful guides for the design and manufacturing of the cross-flow fan system are proposed.

Flow Behavior and Performance Characteristics of Constant Air Volume Fan According to Different Hub Shape (허브 형상에 따른 정풍량 환기팬의 유동과 성능특성)

  • Lee, Ho-Ho;Choi, Hang-Cheol;Jung, Jae-Goo;Lee, Yoon-Pyo;Shin, Yoo-Hwan;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • The constant air volume flow fan can maintain constant flow rate to the wide range of exit pressure. Therefore, the use of this fan is increasing recently for ventilation of high building. Brushless DC motor is adopted to this fan because that has advantages of compactness and performance. But this type of motor protrude from impeller hub side to fan inlet. The Impeller inlet flow is influenced by size of this obstacle called hub. In this paper, the influence of hub shape on the fan performance characteristics are experimentally and numerically analyzed. CFX 12.0 is used to perform the fan internal flow analysis and numerical results are compared with the experiments. Depending on hub shape, internal loss is generated and the performance and efficiency are reduced. The best performance is occurred around $h/b_1$ = 0.25. The results of this study will be contribute to initial design of constant air volume flow fan development.

The Operation and Vibration Characteristics of Tail-fan Performance Test System (테일홴 성능시험장치의 운용과 진동특성)

  • Song, Keun-Woong;Kim, Jun-Ho;Kang, Hee-Jung;Rhee, Wook;Sim, Joung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.421-428
    • /
    • 2005
  • This paper described operation and vibration characteristics of a 'tail-fan' anti-torque performance test system. KARI (Korea Aerospace Research Institute) developed a 'tail-fan' anti-torque system of a helicopter and a performance test-rig to test the performance of the tail-fan. The performance test-rig consists of driving, supporting and rotating parts. In the process of the performance test, firstly, operation test of the test-rig were carried out to verify design specifications. Secondly, natural frequencies of fan blade and test-rig were measured respectively. Lastly, to find the operation rotating speed for the performance test, vibration test were carried out using accelerometers on tail gear box. The performance test conditions of the tail-fan to avoid a resonance were found from the fan-plot and vibration test results. The tail-fan performance tests were well done safely.

Numerical Investigation of Performance Characteristics for Cooling Tower Axial Fans with Sweep (스윕을 가진 냉각탑용 축류홴의 성능 특성에 관한 수치해석적 연구)

  • Oh, K.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.31-37
    • /
    • 2009
  • The purpose of this numerical study was to investigate performance characteristics for cooling tower axial fans with sweep. Performance data for the fans with various sweep angles were obtained in terms of the setting angle at a constant flow rate. Viscous flow calculations were carried out to obtain Performance data of the total pressure rise and hydraulic efficiency. A solution of the Ffowcs Williams-Hawkings equations was used to calculate the sound pressure level at three times fan diameter away from the fan. The calculated performance data well represented performance characteristics of the cooling tower axial fan. The total pressure rise and hydraulic efficiency at the same setting angle decreased with sweep angle. Sound pressure level slightly decreased for the fan with a sweep angle of 10 degree. No significant effect of the sweep geometry was found on the sound pressure level.

  • PDF

A Study on the Development of a Cross-Flow Fan with a Random Distribution of Blades : Study on the Determination of Random Distribution (무작위 날개 배열을 갖는 횡단류 팬의 개발 : 무작위 배열의 선정)

  • 구형모;최원석;최중부;이진교
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.465-470
    • /
    • 1998
  • A cross-flow fan often generates discrete noise call blade passing frequency tones. Several methods have been investigated to reduce this BPF noise, where the random distribution of blades is the most promising one. A simple and effective algorithm to determine a random distribution of blades is proposed which considers fan. performance as well as noise characteristics. The proposed method is verified by a simple numerical model and is applied in manufacturing cross-flow fan samples. Also some experiments are carried out and the experimental results are analyzed.

  • PDF

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.