• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.054 seconds

The Influence of Lap Splice of Longitudinal Bars in the Plstic Hinge Zone on the Nonlinear Behavior Characteristics of RC Piers and New Seismic Detailing Concept in Moderate Seismicity Region (소성힌지 영역의 주철근 겹이음에 의한 RC교각의 비선형 거동특성 및 중약진지역의 내진설계 개선방향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.335-340
    • /
    • 2000
  • The influence of lap splice of longitudinal bars in the plastic hinge zone on the nonlinear behavior characteristics of RC piers has been investigated through the scale model tests. The seismic performance of bridge piers with lap splice is found to be insufficient due to the premature bond failure. On the other hand it is confirmed that the preventing lap splice in the plastic hinge zone enhance the seismic performance considerably even without the seismic details of transverse reinforcements. Bases on these experimental results new seismic detailing concept appropriate to moderate seismicity region has been proposed.

  • PDF

(A) Study on the Mechanical Properties Improvement of Thermite Welded Zone of Railroad Rail (철도레일 테르밋 용접부의 기계적 특성 향상 방안에 관한 연구)

  • Choi, Sang-Kyu;Park, Sung-Sang;Baek, Eung-Ryul;Chun, Bong-Gil
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2101-2106
    • /
    • 2011
  • It is reported that about more than 45% of damage shown in railroad rails include breakage of rail end which cross the center of Thermit welded zone. Thermite welding is always accompanied by numerous aluminum oxide and secondary inclusions, which may have a negative influence on the ductility and toughness of the weld metal. In this study the aluminum powder recycled by waste aluminum can was used for iron oxide generated after the process of welding rod and the remain aluminum was reduced by minimizing the quantity of aluminum. And complete dissolution was induced by using ferro Mn powder as the additive element. This study reviewed the applicability of heat treatment in the welded zone of rail using ceramic heating pad by carrying it out. This study could observe the improvement of the mechanical characteristics (UTS and elongation) and the changes of failure mechanism from brittleness to ductility. It could be found that improved strength and elongation result from pearilte fine structure.

  • PDF

Ground Investigation and Characterization for Deep Tunnel Design (대심도 암반의 터널 설계를 위한 지반 조사와 특성화)

  • Yoon, Woon-Sang;Choi, Jae-Won;Park, Jeong-Hoon;Song, Kook-Hwan;Kim, Young-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.584-590
    • /
    • 2009
  • One of the critical design problems involved in deep tunnelling in brittle rock, is the creation of surface spalling damage and breakouts. If weak fault zone is developed in deep tunnel, squeezing problem is added to the problems. According to the results of ground investigation in the study area, hard granitic rockmass and distinguished high angle fault zone are distributed on the tunnel level over 400m depth. To analyse the probability of brittle failure and squeezing, ground characterization with special lab. and field test were carried out. By the results, probability of brittle failures like spalling and rock burst is very low. But squeezing may be probable, if weak fault zone observed surface and drill core is extended to designed tunnel level.

  • PDF

Finite Element Modeling of Strain Localization Zone in Concrete (콘크리트 변형률국소화영역의 유한요소모델링)

  • 송하원;나웅진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

A rough flat-joint model for interfacial transition zone in concrete

  • Fengchen Li;J.L. Feng
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.231-245
    • /
    • 2024
  • A 3D discrete element model integrating the rough surface contact concept with the flat-joint model is suggested to examine the mechanical characteristics of the interfacial transition zone (ITZ) in concrete. The essential components of our DEM procedure include the calculation of the actual contact area in an element contact-pair related to the bonded factor using a Gaussian probability distribution of asperity height, as well as the determination of the contact probability-relative displacement form using the least square method for further computing the force-displacement of ITZs. The present formulations are implemented in MUSEN, an open source development environment for discrete element analysis that is optimized for high performance computation. The model's meso-parameters are calibrated by using uniaxial compression and splitting tensile simulations, as well as laboratory tests of concrete from the literature. The present model's DEM predictions accord well with laboratory experimental tests of pull-out concrete specimens published in the literature.

Physical modelling of sliding failure of concrete gravity dam under overloading condition

  • Zhu, Hong-Hu;Yin, Jian-Hua;Dong, Jian-Hua;Zhang, Lin
    • Geomechanics and Engineering
    • /
    • v.2 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • Sliding within the dam foundation is one of the key failure modes of a gravity dam. A two-dimensional (2-D) physical model test has been conducted to study the sliding failure of a concrete gravity dam under overloading conditions. This model dam was instrumented with strain rosettes, linear variable displacement transformers (LVDTs), and embedded fiber Bragg grating (FBG) sensing bars. The surface and internal displacements of the dam structure and the strain distributions on the dam body were measured with high accuracy. The setup of the model with instrumentation is described and the monitoring data are presented and analyzed in this paper. The deformation process and failure mechanism of dam sliding within the rock foundation are investigated based on the test results. It is found that the horizontal displacements at the toe and heel indicate the dam stability condition. During overloading, the cracking zone in the foundation can be simplified as a triangle with gradually increased height and vertex angle.

Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code (상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션)

  • Choung, Joonmo;Nam, Woongshik;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System (FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건)

  • Kim, Jung Joong;Noh, Hyuk-Chun;Reda Taha, Mahmoud M.
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

Evaluation of Plastic Collapse Behavior for Multiple Cracked Structures (다중균열 구조물의 소성붕괴거동 평가)

  • Moon, Seong-In;Chang, Yoon-Suk;Kim, Young-Jin;Lee, Jin-Ho;Song, Myung-Ho;Choi, Young-Hwan;Hwang, Seong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1813-1821
    • /
    • 2004
  • Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed.

Investigations on the influence of radial confinement in the impact response of concrete

  • Al-Salloum, Yousef;Alsayed, Saleh;Almusallam, Tarek;Ibrahim, S.M.;Abbas, H.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.675-694
    • /
    • 2014
  • Annular and solid concrete specimens with different aspect ratios and static unconfined compressive strengths were studied for impact loading using SHPB test setup. Numerical simulations in LSDYNA were also carried out and results were validated. The stress-strain curves obtained under dynamic loading were also compared with static compressive tests. The mode of failure of concrete specimen was a typical ductile failure at high strain rates. In general, the dynamic increase factor (DIF) of thin solid specimens was higher than thick samples. In the numerical study, the variation of axial, hydrostatic and radial stresses for solid and annular samples was studied. The core phenomenon due to confinement was observed for solid samples wherein the applied loads were primarily borne by the innermost concrete zone rather than the outer peripheral zone. In the annular samples, especially with large diameter inside hole, the distribution of stresses was relatively uniform along the radial distance. Qualitatively, only a small change in the distribution of stresses for annular samples with different internal diameters studied was observed.