• Title/Summary/Keyword: failure surface

Search Result 1,883, Processing Time 0.025 seconds

A Study on Effect of Shot Peening on Fracture Toughness of Spring Steel (스프링강의 파괴인성에 미치는 쇼트피닝 효과에 관한 연구)

  • Ha, K.J.;Park, K.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.66-72
    • /
    • 2003
  • Recently, the steel parts used at the aerospace and automobile industries are required to be used light weight parts. Therefore, used material, steel have to be a high stress, which is an indispensable condition in this field. At the consideration of parts design, high hardness of the lightweight parts have an benefit of saving fuel and material. A high stress of metal has a point of difference according to the shape of design, external cyclic load and condition of vibration. A crack generates on the surface of metal or under yield stress by defect of inner metal defect or surface defect and slowly, this crack grow stable growth. Finally, rapidity failure phenomena is happen. Fatigue failure_phenomena, which happen in metal, bring on danger in human life and property therefor, anti-fatigue failure technology take an important part of current industries Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper investigated the effect on frcature toughness using shot peening which is improve the resistance of crack growth and crack expansion rate by fatigue that make a compressive residual stress on surface.

  • PDF

Monitoring of Debonding Failure of Reinforced Concrete(RC) Beams Retrofitted with Hybrid Composites by Optical FBG Sensor (Hybrid 복합재료 보강 철근콘크리트 보의 광섬유센서를 이용한 부착파괴 모니터링)

  • Kim, Ki-Soo;Kim, Jong-Woo;Jho, Yoon-Bum;Min, Jung-Hyun;Shin, Yeong-Soo;Jung, Chul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.208-211
    • /
    • 2002
  • In RC beams strengthened with Epoxy-Bonded Fiber, debonding failure happens frequently. Moreover, through the life cycle, it is difficult to recognize clacks and deflections on the surface of concrete members strengthened with Epoxy- Bonded Fiber. For these reasons, we must always monitor the state of RC beams. The Optical FBG sensor is broadly accepted as a structural health monitoring device. The main objective of this paper is that it's possible to monitoring the debonding failure of R.C. beams strengthened with Epoxy-Bonded Fiber. For that, we fixed two Optical FBG sensors at the center of the beam and another two sensors in the end of Epoxy-Bonded Fiber, According to the comparison micro-strain between embeded sensor in concrete and that on the fiber surface, we can find the point which debonding failure occurs

  • PDF

Failure Analysis of the Carburized Engine Parts by Microstructural Observation (침탄처리된 엔진 부품의 미세조직학적 파손원인 분석)

  • Sohn, Kyong-Suk;Lee, Sang-Kee;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2005
  • Failure cause of the fractured engine parts was analyzed by microstructural observation. These parts were failed far earlier than the expected service life. By the stereoscope and SEM examinations of the fractured surface, the fracture modes have been identified as wear and fatigue failure. From the observation of microstructure and microhardness measurements of the failed gears, the probable cause for failures are internal oxidation during using and retained austenite and carbide networks due to heat-treatment, respectively. These defected structures at near surface contributed to the wear and fatigue failure.

Fracture Characteristics Unidirectional Composite Single-Lap Bonded Joints (일방향 복합재료 single-lap 접합 조인트의 파괴 특성)

  • Kim Kwang-Soo;Yoo Jae-Seok;Jang Young-Soo;Yi Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.232-236
    • /
    • 2004
  • The fracture characteristics of unidirectional composite single-lap bonded joints were investigated experimentally and numerically. The effects of bonding method, surface roughness, bondline thickness and the existence of fillet on the failure characteristics and strength of bonded single-lap joints were evaluated experimentally. The failure process, failure mode and the behavior of load-displacement curve was apparently different according to bonding method. The failure load of the specimen co-cured without adhesive was definitely superior to other types of specimens but the specimens co-cured with adhesive film had a less strength than secondary bonded specimens. In the secondary bonded specimens, the lower value of surface roughness and existence of fillet improved the strength of specimens. The strain energy release rates calculated by geometric nonlinear finite element analyses and Virtual Crack Closure Technique for the secondary bonded specimens considering the three types of initial cracks - comer crack, edge crack and delamination crack - were consistent with the test results.

  • PDF

Flashover Failure of Polymer Insulator in Distribution Lines (배전용 폴리머애자의 섬락고장)

  • 한재홍;이병성;김찬영;윤태상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.767-770
    • /
    • 2000
  • This study was investigated for searching a cause of flashover failure of polymer insulator and preparing countermeasures. Hydrophobicity, microstructure and chemical structural change of polymer weathershed were studied by polymer characterization methods. In addition, the electrical properties such as power frequency dry flashover voltage/impulse voltage tests, contamination characteristics were carried out. The hydrophobicity of polymer weathershed was decreased significantly and cracks were observed on the surface. Also, the electrical characteristics did not satisfy the KEPCO specification. The failed polymer insulators showed the more leakage current than 4 years service-aged ones. From the result, it can be concluded that the flashover failure of polymer insulator was attributed to the surface aging and severe contamination.

  • PDF

Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading II: Adhesion Model (인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 II: 접착모델)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.6-13
    • /
    • 2005
  • Copper based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or blackoxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. After fracture toughness testing, the fracture surface were analyzed by various equipment to investigate failure path. An adhesion model was suggested to explain the failure path formation. The adhesion model is based on the strengthening mechanism of fiber-reinforced composite. The present paper deals with the introduction of the adhesion model. The explanation of the failure path with the proposed adhesion model was introduced in the companion paper.

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion

  • Li, T.Z.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.235-245
    • /
    • 2019
  • This paper presents a novel methodology for face stability assessment of rock tunnels under water table by combining the kinematical approach of limit analysis and numerical simulation. The tunnels considered in this paper are excavated in fractured rock masses characterized by the Hoek-Brown failure criterion. In terms of natural rock deposition, a more convincing case of depth-dependent mi, GSI, D and ${\sigma}_c$ is taken into account by proposing the horizontally layered discretization technique, which enables us to generate the failure surface of tunnel face point by point. The vertical distance between any two adjacent points is fixed, which is beneficial to deal with stability problems involving depth-dependent rock parameters. The pore water pressure is numerically computed by means of 3D steady-state flow analyses. Accordingly, the pore water pressure for each discretized point on the failure surface is obtained by interpolation. The parametric analysis is performed to show the influence of depth-dependent parameters of $m_i$, GSI, D, ${\sigma}_c$ and the variation of water table elevation on tunnel face stability. Finally, several design charts for an undisturbed tunnel are presented for quick calculations of critical support pressures against face failure.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.