• Title/Summary/Keyword: failure stress measurement

Search Result 90, Processing Time 0.027 seconds

Characteristics of Excessive Horizontal Stress in ]Korea by Hydraulic Fracturing Stress Measurement (수압파쇄법에 의한 국내 과잉 수평응력 분포 특성에 관한 연구)

  • Bae Seong-Ho;Jeon Seok-Won;Kim Hag-Soo;Kim Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2005
  • In this paper, the characteristics of excessive horizontal stress components in Korea were studied using more than five hundred measured data set of in-situ hydraulic fracturing test. Based on the in-situ testing data, the magnitude and orientation of the horizontal stress component and variation of stress ratio (K) with depth were investigated. And also horizontal stress magnitude versus depth relationships and distribution limits of stress ratio components were suggested. For the depth less than 310 m in the entire territory, the stress ratio has a tendency to diminish and stabilize with depth, but fur some areas, it was revealed that the excessive horizontal stress fields with stress ratio close to 3.0 below 200 m in depth have formed. The results from the investigation of excessive horizontal stress regions showed that there existed several regions where the localized excessive horizontal stress was big enough to potentially induce brittle failure around the openings at less than 300 m in depth.

Fluid Dynamics near end-to-end Anastomoses Part III in Vitro wall Shear Stress Measurement

  • Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 1992
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow condi- tions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experi- mental measurements were in good agreement lith numerical results except In flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compli- ance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia (ANFH) in end-to-end anastomoses.

  • PDF

The influence of residual stress on the engineering behaviour of rock (잔류응력이 암석의 공학적 거동에 끼치는 영향)

  • 박형동
    • Tunnel and Underground Space
    • /
    • v.5 no.4
    • /
    • pp.363-375
    • /
    • 1995
  • Critical literature review in this study revealed that there can be a significant influence of the residual stress on the engineering properties of rock. The review also showed that few number of research works on the quantification of the influence was attributed to the limitation of the two classical measurement techniques, viz, X-ray diffraction and mechanical relaxation method. In this study, a new way of approach was sought based on the assumption that residual stress up to the failure. A series of hoop tests conducted onthe samples from the limb of Carboniferous Limestone in Clevedon, England, revealed that (i) there is no preferential orientations of microcracks and minerals which have been widely believed as the main source of the strength anisotropy of rock; (ii) the anisotropy of the tensile strength of the limestone results from the influence of the residual stress; (iii) since jointing commenced within the fold, residual stored strain energy has been released preferentially in the direction perpendicular to the major joints(o$^{\circ}$ and 90$^{\circ}$); (ⅳ) during the hoop test making it much easier to create tensile fracture in these directons, viz 45$^{\circ}$ and 135$^{\circ}$)was released during the hoop test making it much easier to create tensile fracture in these directions, viz 45$^{\circ}$and 135$^{\circ}$;(v) the direction in which the stored strain energy may be presumed to be the least, required the greatest work to cause failure.

  • PDF

Right ventricular failure in congenital heart disease

  • Cho, Young Kuk;Ma, Jae Sook
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.101-106
    • /
    • 2013
  • Despite developments in surgical techniques and other interventions, right ventricular (RV) failure remains an important clinical problem in several congenital heart diseases (CHD). RV function is one of the most important predictors of mortality and morbidity in patients with CHD. RV failure is a progressive disorder that begins with myocardial injury or stress, neurohormonal activation, cytokine activation, altered gene expression, and ventricular remodeling. Pressure-overload RV failure caused by RV outflow tract obstruction after total correction of tetralogy of Fallot, pulmonary stenosis, atrial switch operation for transposition of the great arteries, congenitally corrected transposition of the great arteries, and systemic RV failure after the Fontan operation. Volume-overload RV failure may be caused by atrial septal defect, pulmonary regurgitation, or tricuspid regurgitation. Although the measurement of RV function is difficult because of many reasons, the right ventricle can be evaluated using both imaging and functional modalities. In clinical practice, echocardiography is the primary mode for the evaluation of RV structure and function. Cardiac magnetic resonance imaging is increasingly used for evaluating RV structure and function. A comprehensive evaluation of RV function may lead to early and optimal management of RV failure in patients with CHD.

Fatigue Life Prediction and Strength Evaluation of Shot Peened Parts (쇼트피이닝한 부재의 피로수명 예측 및 피로강도 평가)

  • Kim, Hwan-Du;Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.75-87
    • /
    • 1985
  • A review was performed on fatigue life prediction and strength evaluation of shot peened parts. Fatigue strength of machine parts can be improved by shot peening due to compressive residual stresses on such parts. Compressive residual stress cannot be uniquely define by peening intensity. Several measuring methods of residual stress and the principle of hole drilling method are presented. Exploratory measurement of residual stress was performed on the shot peened SM35C plate with the hole drilling method. Fatigue life and failure location of shot peened parts under bending load can be predicted by a damage parameter which is incorporated with material properties, residual stress, and applied stress conditions. Some method are presented to predict the fatigue strength of shot peened parts at any given life. Shot peening gives its full benefit to the notched machine parts of high strength steels.

  • PDF

Monitoring Failure Behaviour of Pultruded CFRP Composites by Electrical Resistance Measurement

  • Mao, Yaqin;Yu, Yunhua;Wu, Dezhen;Yang, Xiaoping
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2004
  • The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.

  • PDF

Structural Behavior of the Cylinder Cover Stud of Marine Diesel Engine (박용엔진 실린더 커버 스터드의 구조거동 분석)

  • Kim, Byung-Joo;Lee, Jae-Ohk;Park, Jin-Soo;Kim, Se-Lak
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.267-268
    • /
    • 2006
  • The cylinder cover stud of low-speed marine diesel engine is more than just a stud. It is a large structural element occasionally weighing over 200 kg used for assembling the combustion chamber components. Therefore, to understand the structural behavior of the stud and design it safely is quite important considering a catastrophic failure which can be arisen from an inadequate use of it. In this paper, the analysis results of the structural behavior of the stud is introduced. Strain measurement results compared with FE analysis results are summarized. The results showed that 1) the stud stress increased with engine operating load, 2) the maximum stress amplitude was about 10 MPa which is far smaller than the stud's fatigue strength of 61 MPa, 3) the stress ratio is higher than 0.9 and the stud's load factor is about 20 %, and 4) about 7 % of initial pressure tightening load was reduced while changing to a nut tightened condition.

  • PDF

Flexural behaviors of full-scale prestressed high-performance concrete box girders

  • Gou, Hongye;Gu, Jie;Ran, Zhiwen;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.595-605
    • /
    • 2020
  • In this study, the flexural behaviors of full-scale prestressed concrete box girders are experimentally investigated. Four girders were fabricated using two types of concrete (compressive strengths: 50 MPa and 70 MPa) and tested under four-point bending until failure. The measured parameters included the deflection, the stress and strain in concrete and steel bars, and cracks in concrete. The measurement results were used to analyze the failure mode, load-bearing capacity, and deformability of each girder. A finite element model is established to simulate the flexural behaviors of the girders. The results show that the use of high-performance concrete and reasonable combination of prestressed tendons could improve the mechanical performance of the box girders, in terms of the crack resistance, load-carrying capacity, stress distribution, and ductility.

A Study on the Wear of Rotary Blades (로타리 경운날의 마모에 관한 연구)

  • Choi, S.I.;Kim, J.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 1993
  • Wearness has been a major failure criterion in Korean-made rotary blade. However, few studies have been conducted to improve it. In this study, the fundamental data obtained from the measurement of wearness and failure of rotary blade were analyzed to provide a guideline for the design of rotary blades. For the straight part(about 20-23 em from bolt hole) from the bolt hole to bending point of rotary blade, modifications were proposed for improvements, however, for the portion from bending point to tip was made no design recommendations because the failure behavior of that portion was difficult to analyze with the experimental data. The results are summarized as follows. 1. The current V-shape section has to be moved about 5 em toward the bending point of rotary blade. 2. The section modulus at the portion about 5-7 em distant from bolt hole has to be increased about 15-20 %. 3. The V-shape section has to be changed into U-shape to reduce the on account of recieving initial stress in blades. 4. The radius of curvature of the neck(the portion about 5-7 cm apart from bolt hole) has to be made larger to decrease the stress concentration.

  • PDF

Consideration of Failure Type on the Ground Excavation (지하굴착에 따른 붕괴유형에 대한 고찰)

  • Lee, Jung-Jae;Jung, Kyung-Sik;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.660-670
    • /
    • 2009
  • Neighboring construction becomes mainstream of Ground excavation in downtown area. This causes the displacement, deformation, stress condition, etc of the ground surroundings. Therefore Neighboring construction have an effect on Neighboring structure. All these years a lot of Neighboring construction carried out, and the accumulation of technology also get accomplished. But earth retaining structure collapse happens yet. Types of earth retaining structure collapse are 12. 1. Failure of anchor or strut system, 2. Insufficiency of penetration, 3. H-pile Failure on excessive bending moment, 4. Slope sliding failure, 5. Excessive settlement of the back, 6. Deflection of H-pile, 7. Joint failure of coupled H-pile, 8. Rock failure when H-pile penetration is rock mass, 9. Plane arrangement of support systems are mechanically weak, 10. Boiling, 11. Heaving, 12. Over excavation. But field collapses are difficult for classification according to the type, because collapse process are complex with various types. When we consider the 12 collapse field, insufficient recognition of ground condition is 4 case. Thorough construction management prevents from fault construction. For limitations of soil survey, It is difficult to estimate ground condition exactly. Therefore, it should estimate the safety of earth retaining system, plan for necessary reinforcement, according to measurement and observation continuously.

  • PDF