• Title/Summary/Keyword: failure parameters

Search Result 1,940, Processing Time 0.025 seconds

Reliability-based condition assessment of a deteriorated concrete bridge

  • Ghodoosi, Farzad;Bagchi, Ashutosh;Zayed, Tarek;Zaki, Adel R.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.357-369
    • /
    • 2014
  • In the existing bridge management systems, assessment of the structural behavior is based on the results of visual inspections in which corresponding condition states are assigned to individual elements. In this process, limited attention is given to the correlation between bridge elements from structural perspective. Also, the uncertainty of parameters which affect the structural capacity is ignored. A system reliability-based assessment model is potentially an appropriate replacement for the existing procedures. The aim of this research is to evaluate the system reliability of existing conventional Steel-Reinforced bridge decks over time. The developed method utilizes the reliability theory and evaluates the structural safety for such bridges based on their failure mechanisms. System reliability analysis has been applied to simply-supported concrete bridge superstructures designed according to the Canadian Highway Bridge Design Code (CHBDC-S6) and the deterioration pattern is achieved based on the reliability estimates. Finally, the bridge condition index of an old existing bridge in Montreal has been estimated using the developed deterioration pattern. The results obtained from the developed reliability-based deterioration model and from the evaluation done by bridge engineers have been found to be in accordance.

Factor of safety in limit analysis of slopes

  • Florkiewicz, Antoni;Kubzdela, Albert
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.485-497
    • /
    • 2013
  • The factor of safety is the most common measure of the safety margin for slopes. When the traditionally defined factor is used in kinematic approach of limit analysis, calculations can become elaborate, and iterative methods have to be used. To avoid this inconvenience, the safety factor was defined in terms of the work rates that are part of the work balance equation used in limit analysis. It was demonstrated for two simple slopes that the safety factors calculated according to the new definition fall close to those calculated using the traditional definition. Statistical analysis was carried out to find out whether, given normal distribution of the strength parameters, the distribution of the safety factor can be approximated with a well-defined probability density function. Knowing this function would make it convenient to calculate the probability of failure. The results indicated that the normal distribution could be used for low internal friction angle (up to about $16^{\circ}$) and the Johnson distribution could be used for larger angles ${\phi}$. The data limited to two simple slopes, however, does not allow assuming these distributions a priori for other slopes.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Repair of precracked RC rectangular shear beams using CFRP strip technique

  • Jayaprakash, J.;Samad, Abdul Aziz Abdul;Abbasovich, Ashrabov Anvar;Ali, Abang Abdullah Abang
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.427-439
    • /
    • 2007
  • The exploitation of fibre reinforced polymer composites, as external reinforcement is an evergreen and well-known technique for improving the structural performance of reinforced concrete structures. The demand to use FRP composites in the civil engineering industry is mainly due to its high strength, light weight, and stiffness. This paper exemplifies the shear strength of partially precracked reinforced concrete rectangular beams repaired with externally bonded Bi-Directional Carbon Fibre Reinforced Polymer (CFRP) Fabrics strips. All specimens were cast in the laboratory environment without any internal shear reinforcement. The test parameters were longitudinal tensile reinforcement, shear span to effective depth ratio, spacing of CFRP strips, and orientation of CFRP reinforcement. It mainly focuses on the shear capacity and modes of failure of the CFRP strengthened shear beams. Results have shown that the CFRP repaired beams attained a shear enhancement of 32% and 107.64% greater than the control beams. This study underscores that the CFRP strip technique significantly enhanced the shear capacity of precracked reinforced concrete rectangular beams without any internal shear reinforcement.

Analysis and design of demountable embedded steel column base connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper describes the finite element model for predicting the fundamental performance of embedded steel column base connections under monotonic and cyclic loading. Geometric and material nonlinearities were included in the proposed finite element model. Bauschinger and pinching effects were considered in the simulation of embedded column base connections under cyclic loading. The degradation of steel yield strength and accumulation of plastic damage can be well simulated. The accuracy of the finite element model is examined by comparing the predicted results with independent experimental dataset. It is demonstrated that the finite element model accurately predicts the behaviour and failure models of the embedded steel column base connections. The finite element model is extended to carry out evaluations and parametric studies. The investigated parameters include column embedded length, concrete strength, axial load and base plate thickness. Moreover, analytical models for predicting the initial stiffness and bending moment strength of the embedded column base connection were developed. The comparison between results from analytical models and those from experiments and finite element analysis proved the developed analytical model was accurate and conservative for design purposes.

Finite element and design code assessment of reinforced concrete haunched beams

  • Gulsan, Mehmet Eren;Albegmprli, Hasan M.;Cevik, Abdulkadir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.423-438
    • /
    • 2018
  • This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA. The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the proposed equation to their predecessors where the correlation coefficient, $R^2$ was found to be 0.89 for the proposed equation. Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both experimental and predicted results shows that the inclination angle and the compressive strength were the most influential parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • Current form of Corrugated-strip connectors are not popular due to the fact that the two ends of this form need to be welded to steel face plates. To overcome this difficulty, a new system is proposed in this work. In this system, bi-directional corrugated-strip connectors are used in pairs, and only one of their ends is welded to the steel face plates on each side. The other end is embedded in the concrete core. To assemble the system, common welding devices are required, and welding process can be performed in the construction sites. By performing the Push-out test under static loading, the authors experimentally assess the effects of geometric parameters on ductility, failure modes and the ultimate shear strength of the aforesaid connectors. For this purpose, sixteen experimental samples are prepared and investigated. For fifteen of these samples, one end of the shear connectors is welded to steel face plates, and the other end is embedded in the concrete. Another experimental sample is prepared in which both ends are welded to the steel face plates. According to the achieved results, several relations are proposed for predicting the ultimate shear strength and load vs. interlayer slip (load-slip) behavior of corrugated-strip connectors. Moreover, these formulas are compared with those of the well-known codes and standards. Accordingly, it is concluded that the authors' relations are more reliable.

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

A Study of Fine Tuning Pre-Trained Korean BERT for Question Answering Performance Development (사전 학습된 한국어 BERT의 전이학습을 통한 한국어 기계독해 성능개선에 관한 연구)

  • Lee, Chi Hoon;Lee, Yeon Ji;Lee, Dong Hee
    • Journal of Information Technology Services
    • /
    • v.19 no.5
    • /
    • pp.83-91
    • /
    • 2020
  • Language Models such as BERT has been an important factor of deep learning-based natural language processing. Pre-training the transformer-based language models would be computationally expensive since they are consist of deep and broad architecture and layers using an attention mechanism and also require huge amount of data to train. Hence, it became mandatory to do fine-tuning large pre-trained language models which are trained by Google or some companies can afford the resources and cost. There are various techniques for fine tuning the language models and this paper examines three techniques, which are data augmentation, tuning the hyper paramters and partly re-constructing the neural networks. For data augmentation, we use no-answer augmentation and back-translation method. Also, some useful combinations of hyper parameters are observed by conducting a number of experiments. Finally, we have GRU, LSTM networks to boost our model performance with adding those networks to BERT pre-trained model. We do fine-tuning the pre-trained korean-based language model through the methods mentioned above and push the F1 score from baseline up to 89.66. Moreover, some failure attempts give us important lessons and tell us the further direction in a good way.