• Title/Summary/Keyword: failure of columns

Search Result 577, Processing Time 0.021 seconds

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

Mechanical Behavior of Slender Concrete-Filled Fiber Reinforced Polymer Columns

  • Choi Sokhwan;Lee Myung;Lee Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.565-572
    • /
    • 2004
  • The mechanical behavior of concrete-filled glass fiber reinforced polymer columns is affected by various factors including concrete strength, stiffness of tube, end confinement effect, and slenderness ratio of members. In this research the behavior of slender columns was examined both experimentally and analytically. Experimental works include 1) compression test with 30cm long glass fiber composite columns under different end confinement conditions, 2) uni-axial compression test for 7 slender columns, which have various slenderness ratios. Short-length stocky columns gave high strength and ductility revealing high confinement action of FRP tubes. The strength increment and strain change were examined under different end confinement conditions. With slender columns, failure strengths, confinement effects, and stress-strains relations were examined. Through analytical work, effective length was computed and it was compared with the amount of reduction in column strength, which is required to predict design strength with slender specimens. This study shows the feasibility of slender concrete-filled glass fiber reinforced polymer composite columns.

Investigation of cold-formed stainless steel non-slender circular hollow section columns

  • Ellobody, Ehab;Young, Ben
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.321-337
    • /
    • 2007
  • The investigation on the behaviour of cold-formed stainless steel non-slender circular hollow section columns is presented in this paper. The normal strength austenitic stainless steel type 304 and the high strength duplex materials (austenitic-ferritic approximately equivalent to EN 1.4462 and UNS S31803) were considered in this study. The finite element method has been used to carry out the investigation. The columns were compressed between fixed ends at different column lengths. The geometric and material nonlinearities have been included in the finite element analysis. The column strengths and failure modes were predicted. An extensive parametric study was carried out to study the effects of normal and high strength materials on cold-formed stainless steel non-slender circular hollow section columns. The column strengths predicted from the finite element analysis were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. The numerical results showed that the design rules specified in the American, Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel non-slender circular hollow section columns of normal and high strength materials, except for the short columns and some of the high strength stainless steel columns. Therefore, different values of the imperfection factor and limiting slenderness in the European Code design rules were proposed for cold-formed stainless steel non-slender circular hollow section columns.

Repaired concrete columns with fiber reinforced thixotropic mortar: experimental & FEA approach

  • Achillopoulou, Dimitra V.;Arvanitidou, Konstantinia C.;Karabinis, Athanasios I.
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.73-88
    • /
    • 2015
  • Following previous studies, the current paper describes the results of an experimental program concerning the repair of reinforced concrete columns by thixotropic pseudo plastic mortar, preformed to analyze and quantify the influence of initial construction damage to the behavior of the repaired element. Five columns (section scale 1:2) were designed according to the minimum requirements of reinforcement of ductility orientated codes' design with variables the percentages of initial construction damages. All were tested in axial compression with repeated cycles up to failure. For comparison reasons, another one of the same characteristics, yet healthy, was constructed and tested as a reference specimen. A numerical study (Finite Element Analysis) was conducted for further investigation of the behavior of the thixotropic mortar as repair material. The results indicate that: a) surpassing a specific amount of damage, columns even suitably repaired present lower strain capacity, b) finite element analysis present the same way of deboning of the repaired material taking into consideration the buckling of the reinforcement bars.

Stress-transfer in concrete encased and filled tube square columns employed in top-down construction

  • Kim, Sun-Hee;Yom, Kyong-Soo;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.63-77
    • /
    • 2016
  • Top-down construction is a construction technique in which pit excavation and structure construction are conducted simultaneously. Reducing construction time and minimizing noise and vibration which affect neighboring structures, the technique is widely employed in constructing downtown structures. While H-steel columns have been commonly used as core columns, concrete filled steel tube (CFT) columns are at the center of attention because the latter have less axial directionality and greater cross-sectional efficiency than the former. When compared with circular CFT columns, square CFT columns are more easily connected to the floor structure and the area of percussion rotary drilling (PRD) is smaller. For this reason, square CFT columns are used as core columns of concrete encased and filled square (CET) columns in underground floors. However, studies on the structural behavior and concrete stress transfer of CET columns have not been conducted. Since concrete is cast according to construction sequence, checking the stress of concrete inside the core columns and the stress of covering concrete is essential. This paper presents the results of structural tests and analyses conducted to evaluate the usability and safety of CET columns in top-down construction where CFT columns are used as core columns. Parameters in the tests are loading condition, concrete strength and covering depth. The compressive load capacity and failure behavior of specimens are evaluated. In addition, 2 cases of field application of CET columns in underground floors are analyzed.

Effect of crumb rubber on compressive behaviour of CRCFST stub columns

  • Liu, Dawei;Liang, Jiongfeng;Zhang, Guangwu;Wang, Jianbao
    • Computers and Concrete
    • /
    • v.25 no.3
    • /
    • pp.267-272
    • /
    • 2020
  • This paper investigates the effect of crumb rubber (CR) on compressive behaviour of crumb rubber concrete filled steel tube (CRCFST) stub columns. Therefore, experiments on 16 stub columns subjected to axial loading are carried out. The results show that the failure modes of CRCFST stub columns with different CR replacement ratios and CR size are similar, manifested the buckling of the outer steel tube. The axial bearing capacity and stiffness both decrease with an increase in CR replacement ratio, and with decreasing CR size.

Eccentric performance of CFST columns jacketed with steel tube and sandwiched concrete

  • Weijie Li;Yiyan Lu;Yue Huang;Shan Li
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.89-102
    • /
    • 2023
  • This study investigates the eccentric performance of concrete-filled steel tubular (CFST) stub columns strengthened with steel tube and sandwiched concrete (STSC) jackets. It was revealed that the STSC jacketing method effectively weakened the cracking of concrete in CFST columns on the convex side and the crash on the concave side. Substantial increases in the eccentric bearing capacities were demonstrated after strengthening. A numerical study was further conducted. The decrease in diameter-to-thickness ratio and increase in strength of outer tube contributed to increase in peak load of all components, whereas the increase in sandwiched concrete strength resulted in load increase on itself and had negligible effects on other components. The parametric study showed the effect of inner concrete strength on columns' bearing capacity was magnified after strengthening, whereas that of inner tube thickness was reduced. Within the parameters investigated, high-strength concrete and high-strength steel can be applied without the concern of early abrupt failure of inner low-strength concrete or steel tube.

Flexural Overstrength of Reinforced Concrete Bridge Columns for Capacity Design (철근콘크리트 교각의 성능보장설계를 위한 휨 초과강도)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Choi, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.85-97
    • /
    • 2006
  • Capacity design is to guarantee ductile failure of whole bridge system by preventing brittle failure of columns and any other structural elements until the columns develope fully enough plastic deformation capacity. This concept has been explicitly regulated in most bridge design specifications of foreign countries except the current Korea Bridge Design Specifications. In the capacity design, the transformed shear force from flexural overstrength of reinforced concrete column is used as the design lateral shear force for shear design of columns and design of footings and piles. Different calculating methods are adopted by the design specifications, since the variability of material strength and construction circumstances of the local regions should be considered. This paper proposed material overstrength factors by investigating 3,407 reinforcing bar data and 5,405 concrete compressive strength data collected in Korean construction sites. It also proposed calculating procedures for flexural overstrength of reinforced concrete columns using the material overstrength. Finally, overstrength factor was proposed as 1.5 by investigating 1,500 column section data from moment-curvature analysis using the material overstrength.

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.