• 제목/요약/키워드: failure mode effect analysis

검색결과 313건 처리시간 0.034초

안전성 분석에 대한 사례 연구 (A Case Study for Safety Analysis)

  • Chang, Kwang-Chi;Lee, Key-Seo
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.251-258
    • /
    • 2004
  • A systematic methodology to determine safety requirements for railway signalling system and safety requirement allocation into system are presented. THR concept is used for as an interface between Risk Analysis to be performed by railway operator and System Design Analysis by the supplier. This approach is based on Signalling Safety Standard EN50129 by CENELEC.

Analysis of colliding index on impact behavior of RC columns under repeated impact loading

  • Tantrapongsaton, Warakorn;Hansapinyo, Chayanon;Wongmatar, Piyapong;Limkatanyu, Suchart;Zhang, Hexin;Charatpangoon, Bhuddarak
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.19-32
    • /
    • 2022
  • This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact.

진동 분석을 이용한 사출성형기 유압펌프 결함 진단 시스템에 관한 연구 (A Study on Failure Diagnosis System for a Hydraulic Pump in Injection Molding Machinery Using Vibration Analysis)

  • 김태현;전용호;이문구
    • 한국생산제조학회지
    • /
    • 제22권3호
    • /
    • pp.343-348
    • /
    • 2013
  • In line with the advances in factory automation, various pieces of equipment are now operated in batch processes controlled by computers. However, many kinds of faults can occur in complicated and large systems, which can result in low productivity and economic loss. The reliability and safety of systems have been studied because of the difficulty of determining the severity and location of faults. Therefore, it is necessary to detect and diagnose such faults in order to guarantee the reliability and safety of the equipment. In this paper, a diagnosis method for the ball bearings of a hydraulic pump is applied using a vibration signal for the maintenance of injection molding equipment. The bearings' defects are selected as a main failure mode through a failure mode and effect analysis (FMEA). Usually, there are nonlinear and impulse components of vibration in a ball bearing with faults. For the effective fault diagnosis of a ball bearing, nonlinear diagnostic methods and time-frequency analysis are applied, in addition to the methods currently used, such as power spectrum, time series analysis, and statistical methods. As a result of this study, a failure diagnosis system is provided that is useful even for non-experts. This is a condition-based method that makes it possible to resolve problems in a timely and economical way, in contrast to the prior method, which required regular but wasteful maintenance based on the experience of expensive external experts.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Seismic response and failure analyses of pile-supported transmission towers on layered ground

  • Pan, Haiyang;Li, Chao;Tian, Li
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.223-237
    • /
    • 2020
  • Transmission towers have come to represent one of the most important infrastructures in today's society, which may suffer severe earthquakes during their service lives. However, in the conventional seismic analyses of transmission towers, the towers are normally assumed to be fixed on the ground without considering the effect of soil-structure interaction (SSI) on the pile-supported transmission tower. This assumption may lead to inaccurate seismic performance estimations of transmission towers. In the present study, the seismic response and failure analyses of pile-supported transmission towers considering SSI are comprehensively performed based on the finite element method. Specifically, two detailed finite element (FE) models of the employed pile-supported transmission tower with and without consideration of SSI effects are established in ABAQUS analysis platform, in which SSI is simulated by the classical p-y approach. A simulation method is developed to stochastically synthesize the earthquake ground motions at different soil depths (i.e. depth-varying ground motions, DVGMs). The impacts of SSI on the dynamic characteristic, seismic response and failure modes are investigated and discussed by using the generated FE models and ground motions. Numerical results show that the vibration mode shapes of the pile-supported transmission towers with and without SSI are basically same; however, SSI can significantly affect the dynamic characteristic by altering the vibration frequencies of different modes. Neglecting the SSI and the variability of earthquake motions at different depths may cause an underestimate and overestimate on the seismic responses, respectively. Moreover, the seismic failure mode of pile-supported transmission towers is also significantly impacted by the SSI and DVGMs.

Application of Reliability Centered Maintenance Strategy to Safety Injection System for APR1400

  • Rezk, Osama;Jung, JaeCheon;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.41-58
    • /
    • 2016
  • Reliability Centered Maintenance (RCM) introduces a systematic method and decision logic tree for utilizing previous operating experience focused on reliability and optimization of maintenance activities. In this paper RCM methodology is applied on safety injection system for APR-1400. Functional Failure Mode Effects and Criticality Analysis (FME&CA) are applied to evaluate the failure modes and the effect on the component, system and plant. Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The results show that increasing the condition based maintenance will reduce component failure and improve reliability and availability of the system. Also the extension of the surveillance test interval of Safety Injection Pumps (SIPs) would lead to an improved pump's availability, eliminate the unnecessary maintenance tasks and this will optimize maintenance activities.

Seismic behavior of high-strength concrete flexural walls with boundary elements

  • Kim, Seung-Hun;Lee, Ae-Bock;Han, Byung-Chan;Ha, Sang-Su;Yun, Hyun-Do
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.493-516
    • /
    • 2004
  • This paper addresses the behavior and strength of structural walls with a concrete compressive strength exceeding 69 MPa. This information also enhances the current database for improvement of design recommendations. The objectives of this investigation are to study the effect of axial-load ratio on seismic behavior of high-strength concrete flexural walls. An analysis has been carried out in order to assess the contribution of deformation components, i.e., flexural, diagonal shear, and sliding shear on total displacement. The results from the analysis are then utilized to evaluate the prevailing inelastic deformation mode in each of wall. Moment-curvature characteristics, ductility and damage index are quantified and discussed in relation with axial stress levels. Experimental results show that axial-load ratio have a significant effect on the flexural strength, failure mode, deformation characteristics and ductility of high-strength concrete structural walls.

자동차용 에어컨 클러치 코일의 수명평가 기준과 고장해석 (Lifetime Assessment Criteria and Failure Analysis for the Clutch Coil in an Automotive Air Conditioner)

  • 최만엽;위신환;김정식;정해성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권2호
    • /
    • pp.111-126
    • /
    • 2011
  • The clutch coil mounted on the automotive air conditioner is an important part which actuates the clutch to connect or disconnect the pulley and the compressor according to the climate control condition in an automobile. Here, it is generally required that the clutch coil should ensure the long term durability requirement, such as a warranty for the 10 years of field operation or 160,000 km driving, especially in a brand new item, and so forth. However, some difficulties have arisen in restoring its credibility, since domestic specifications for the part have not been yet unified. In order to ensure the reliability, test methods and assessment criteria should be standardized. Moreover, assessed lifetime under specific conditions and potential failure analysis would be important. In this study, lifetime test specifications for the clutch coil have been reviewed and methodological suggestions are provided to ensure reliability, utilizing a quality function deployment through the potential failure mode effect analysis.

FMEA를 이용한 기계류 시스템의 신뢰도 분석 (Reliability Analysis of Machinery system for Failure Mode and Effect Analysis)

  • 진도훈;우태수;이치우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.30-35
    • /
    • 2002
  • This paper dealt with FMEA, which is a method of the analysis to secure safety and confidence coming up to customers'expectation in consideration of the environment of the corporation, the industrial environment, and the functional improvement. And by using FMEA, We showed the example analyzed the confidence of the Air Supply System. It was proved by the result of the analysis that the rate of the breakdown which is usually regarded as the first important point to reform can't satisfy the selecting basis to improve. Also the result said that it is not right to depend on only the rate of the failure in making the list of the reform. Through the analysis of the breakdown, FMEA can present the important factors of the reform to improve the confidence of the system. In this study would show the important factors of the improvement in order to product the goods guaranteed confidence through the method of FMEA.

  • PDF

2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석 (Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis)

  • 서승환;박재현;이성준;정문경
    • 한국지반공학회논문집
    • /
    • 제34권10호
    • /
    • pp.61-74
    • /
    • 2018
  • 본 연구에서는 케이블 인발하중이 작용하는 현수교의 앵커리지 종류 중 터널식 앵커리지의 인발거동 특성을 축소모형실험과 수치해석을 통하여 분석하였다. 터널식 앵커리지는 국내외 적용사례가 적고 파괴형태 및 안전율 등 설계기법이 명확히 정립되어 있지 않아 설계기법 개선과 관련한 연구가 필요한 실정이다. 이에 국내 최초로 터널식 앵커리지가 적용된 울산대교를 대상으로 형상 및 구조를 단순화하여 축소모형실험을 수행하였다. 모형실험에서 앵커리지 구체와 주변 암반을 석고혼합물로 구현하였고, 평면 변형률 조건에서 인발 거동 특성을 조사하였다. 모형실험결과 터널식 앵커리지의 최종 인발 파괴모드는 울산대교의 설계시 가정한 바와 달리 쐐기(wedge)형태로 나타났다. 이를 검증하기 위해 유한요소해석 프로그램인 ABAQUS를 사용하여 수치해석을 시행하였고, 모형실험결과와 동일한 인발 파괴 거동을 확인할 수 있었다. 수치해석에서는 추가적으로 모형재료의 포아송비 및 주변암반의 강도 변화에 따른 영향을 조사하였다. 그 결과 극한 인발상태까지는 포아송비에 따른 영향이 적은 것으로 나타났고, 주변암반의 강도가 앵커리지 구체의 강도보다 10배 이상 큰 특수한 경우에 한하여 앵커리지가 주변 암반의 경계면을 따라 빠져나오는 소위 플러그(plug)형태의 파괴모드가 발생할 수 있음을 확인하였다.