• Title/Summary/Keyword: factory manufacturing

Search Result 791, Processing Time 0.028 seconds

The Effect of Both Employees' Attitude toward Technology Acceptance and Ease of Technology Use on Smart Factory Technology Introduction level and Manufacturing Performance (종업원 기술수용태도와 기술 사용용이성이 스마트공장 기술 도입수준과 제조성과에 미치는 영향)

  • Oh, Ju Hwan;Seo, Jin Hee;Kim, Ji Dae
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.2
    • /
    • pp.13-26
    • /
    • 2019
  • The purpose of this study is to examine the effect of each of the two technology acceptance factors(employees' attitude toward smart factory technology, and ease of smart factory technology use) on the introduction level of each of the three smart factory technologies (manufacturing big data technology, automation technology, and supply chain integration technology), and in turn, the effect of each of the three smart factory technologies on manufacturing performance. This study employed PLS statistics software package to empirically validate a structural equation model with survey data from 100 domestic small-and medium-sized manufacturing firms (SMMFs). The analysis results revealed the followings. First, it is founded that employees' attitude toward smart factory technology influenced all of the three smart factory technology introduction levels in a positive manner. In particular, SMMFs of which employees had more favorable attitude toward smart factory technology tended to increase introduction levels of both automation technology and supply chain integration technology more than in the case of manufacturing big data technology. Second, ease of smart factory technology use also had a positive impact on each of the three smart factory technology introduction levels, respectively. A noteworthy finding is this : SMMFs which perceived smart factory technology as easier to use would like to elevate the introduction level of manufacturing big data technology more than in the cases of either automation technology or supply chain integration technology. Third, smart factory technologies such as automation technology and supply chain integration technology had affirmative impacts on manufacturing performance of SMMFs. These results shed some valuable insights on the introduction of smart factory technology : The success of smart factory heavily depends on organization-and people-related factors such as employees' attitude toward smart factory technology and employees' perceived ease of smart factory technology use.

Analysis of Factors Affecting Company Performance by Smart Factory (스마트공장 보급이 중소기업 경영에 미치는 영향 요인 분석)

  • Kim, Jinhan;Cho, Jinhyung;Lee, Saejae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.76-83
    • /
    • 2019
  • The South Korean government is actively assisting the supply of the smart factory solutions to SMEs (Small & Medium-sized Enterprises) according to its manufacturing innovation 3.0 policy for the smart manufacturing as the 4th industrial revolution era unfolds. This study analyzed the impacts of the smart factory solutions, which have been supplied by the government, on the companies performances. The effects of the level of smart factory and the operation capabilities for the smart factory solutions on company performances, and the mediating effects of manufacturing capabilities have been analyzed using SPSS and AMOS. The data for this survey-based study were collected from the SMEs which implemented the smart factory solutions since 2015. The results show that the level of smart factory solutions adopted and operation capabilities for the smart factories do not have direct effects on the company performances, but their mediating effects on the manufacturing capabilities matter and the manufacturing capabilities effect directly on the company performances. In addition significant factors boosting the operation capability for the smart factory and the levels of the smart factory solutions are identified. Finally, the policy direction for enhancing the smart factory effects is presented, and the future research directions along with the limitations are suggested.

Virtual Manufacturing for an Automotive Company (IV)-Information Management for a Virtual Factory (자동차 가상생산 기술 적용 (IV)- 가상공장 정보 관리)

  • Noh, Sang-Do;Ahn, Hyeon-Sik;Park, Young-Jin
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • Virtual Manufacturing is a technology facilitating effective development and agile production of products via computer models representing physical and logical schema and the behavior of the real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a virtual factory as a well-designed and integrated environment is essential. To construct a virtual factory in effective and concurrent manners, a supporting information infrastructure for managing diverse models of virtual factory is very important. In this paper, we constructed the web-based information management system for many engineering activities related with a virtual factory. Using this system, users can handle all information and diverse digital files including attributes, parameters, 3-D CAD files, simulation models, and etc. of a cell, line and whole factory. We expect that this information management system for a virtual factory helps us achieve great time savings and advances in accuracy for construction and maintenance activities of virtual factories.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Hierarchical Constructions of Digital Virtual Factory and its Management (디지털 가상공장의 계층적 구축과 운영에 관한 연구)

  • Kim Yu-Seok;Noh Sang-Do;Hah Sang-Dong;Shin Jong-Gye
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.960-964
    • /
    • 2005
  • Digital Virtual Manufacturing is a technology to facilitate effective product developments and agile productions by digital models representing the physical and logical schema and the behavior of real manufacturing systems including products, process, manufacturing resources and plants. A digital virtual factory as a well-designed and integrated environment is essential for successful applications of this technology. In this research, we constructed a sophisticated digital virtual factory of the shipbuilding company's section steel shop by 3-D CAD and virtual manufacturing simulation. This digital virtual factory can be applied for diverse engineering activities in design, manufacturing and control of the real factory.

  • PDF

UML Analysis and Digital Model Implementation for Micro-factory (초소형 공장의 객체지향 분석 및 디지털 모델구축)

  • Park, Sang-Ho;Choi, Sung-Il;Jung, Young-Sang;Song, Joon-Yub;Lee, Chang-Woo;Subramaniyam, Murali;Jang, Seck-Ho;Kim, Jin-Won
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-49
    • /
    • 2007
  • Recent manufacturing system requires development on new production technology to enable prompt manufacturing of diverse products. Most of the researchers have been working on micro-factory. Especially, focus on manufacturing of micro parts. Present manufacturing system consumes excessive resources in the form of energy and space to manufacture the micro parts. In this study, the micro lens module assembly system was modeled, analyzed with MST(Micro System Technology) Application Module and simulated through UML Language (Unified Modeling Language) with object-oriented logical model analysis method. Digital model of micro-factory was modeled, to execute the new paradigm of digitalization on products, resources and processes of micro-factory.

Digital Manufacturing Simulation for Micro Factory (마이크로 공장을 위한 디지털 생산 시뮬레이션)

  • Park Sangho;Jung Young Sang;Song Jun Yeob;Lee Seung Woo;Kim Dong Hoon;Lee Soo Hoon;Park Jong Kweon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.453-457
    • /
    • 2005
  • Existing manufacturing system has consumed too much energy, space and resource in micro parts manufacturing. To improve this, micro factory system is suggested. But it is difficult to get the high reliability in the assembly, production and inspection of the minute parts because the construction of the micro factory has been started just before. In this study, we will build the digital manufacturing simulation on the micro factory's process and verify the production and assembly process using this simulation.

  • PDF

Manufacturing Preparations in the New Car Development for an Automotive Body Shop by Digital Manufacturing Technologies (차체공장 디지털생산 기술 적용을 통한 신차 개발 생산준비 업무 수행)

  • 노상도;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.118-126
    • /
    • 2003
  • Digital Manufacturing is a technology facilitating effective developments and agile productions of the product via digital computer models representing physical and logical schema and the behavior of the real manufacturing systems including manufacturing resources, environments and products. For the successful application of this technology, a digital factory as a well-designed and an integrated environment is essential. In this paper, we constructed the sophisticated digital factory of a Korean automotive company's body shop, and conducted precise simulations of unit cell, lines and the whole factory for the collision check, the production flow analysis and the off-line programming. We expect that this digital factory of the body shop helps us achieve great savings in time and cost for many manufacturing preparation activities of the new car development.

An Integrated Simulation Method to Support Virtual Factory Engineering

  • Zhai, Wenbin;Fan, Xiumin;Yan, Juanqi;Zhu, Pengsheng
    • International Journal of CAD/CAM
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • This paper presents a structure and architecture of an integrated simulation method (ISM) to meet the requirements of virtual factory engineering (VFE). Combining CAD, VR and discrete event simulation techniques, the ISM provides static and dynamic simulation functions for implementation of VFE throughout the lifecycle. The static simulation can be used to evaluate the factory layout. The dynamic simulation enables us to evaluate ergonomics of factory, process performance of production system, feasibility of production plan and operation of factory, and to train operators safely, which cover the whole VFE lifecycle. The principles of the key techniques of VFE, including virtual factory data management system (VFDMS), static and dynamic simulation, are also discussed. To demonstrate and validate the ISM, a case study has been carried out in an assembly factory.

Development of Domestic Standardization in Smart Factory and Manufacturing Data (국내 스마트공장 및 제조 데이터 표준 개발 동향)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.783-788
    • /
    • 2021
  • Smart manufacturing is defined as the fully ICT-based manufacturing process which digitized, optimized, and automized the of manufacturing system in smart factory which includes product planning, design, production, quality, stock, procure. In this paper, we introduce the development of domestic standardization of smart factory and manufacturing data which are generated in operation of smart factory. We focus on general standardization of smart factory/ICT-based manufacturing system and data transactions related issues since the range of standardization is too wide. Based on these standardization review, we discuss the several concerns for utilization of manufacturing data.