• Title/Summary/Keyword: factored recommender systems

Search Result 1, Processing Time 0.014 seconds

Regularized Optimization of Collaborative Filtering for Recommander System based on Big Data (빅데이터 기반 추천시스템을 위한 협업필터링의 최적화 규제)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.87-92
    • /
    • 2021
  • Bias, variance, error and learning are important factors for performance in modeling a big data based recommendation system. The recommendation model in this system must reduce complexity while maintaining the explanatory diagram. In addition, the sparsity of the dataset and the prediction of the system are more likely to be inversely proportional to each other. Therefore, a product recommendation model has been proposed through learning the similarity between products by using a factorization method of the sparsity of the dataset. In this paper, the generalization ability of the model is improved by applying the max-norm regularization as an optimization method for the loss function of this model. The solution is to apply a stochastic projection gradient descent method that projects a gradient. The sparser data became, it was confirmed that the propsed regularization method was relatively effective compared to the existing method through lots of experiment.