• Title/Summary/Keyword: factor loading

Search Result 1,333, Processing Time 0.022 seconds

Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading (휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델)

  • Chae, Young-Suk;Tae, Ghi-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Response of square anchor plates embedded in reinforced soft clay subjected to cyclic loading

  • Biradar, Jagdish;Banerjee, Subhadeep;Shankar, Ravi;Ghosh, Poulami;Mukherjee, Sibapriya;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Plate anchors are generally used for structures like transmission towers, mooring systems etc. where the uplift and lateral forces are expected to be predominant. The capacity of anchor plate can be increased by the use of geosynthetics without altering the size of plates. Numerical simulations have been carried out on three different sizes of square anchor plates. A single layer geosynthetic has been used as reinforcement in the analysis and placed at three different positions from the plate. The effects of various parameters like embedment ratio, position of reinforcement, width of reinforcement, frequency and loading amplitude on the pull out capacity have been presented in this study. The load-displacement behaviour of anchors for various embedment ratios with and without reinforcement has been also observed. The pull out load, corresponding to a displacement equal to each of the considered maximum amplitudes of a given frequency, has been expressed in terms of a dimensionless breakout factor. The pull out load for all anchors has been found to increase by more than 100% with embedment ratio varying from 1 to 6. Finally a semi empirical formulation for breakout factor for square anchors in reinforced soil has also been proposed by carrying out regression analysis on the data obtained from numerical simulations.

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Fatigue Crack Propagation Behavior in STS304 under Mixed Mode Loading (혼합모드 하중에서의 STS304의 피로균열 전과거동)

  • Song, Sam-Hong;Lee, Jeong-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.131-139
    • /
    • 2001
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failure occur from cracks subjected to mixed mode loadings. Hence, it is necessary to evaluate the fatigue behavior under mixed mode loading. Under mixed mode loading conditions, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. The mode I and II stress intensity factors of CTS specimen were calculated using elastic finite element method. The propagation behavior of the fatigue crack of the STS304 steeds under mixed mode loading condition was evacuated by using stress intensity factors $K_I$ and $K_II. The MTS criterion and effective stress intensity factor were applied to predict the crack propagation direction and the fatigue crack propagation rate.

  • PDF

Evaluation of Fatigue Endurance for an MTB Frame (산악용 자전거 프레임의 피로 내구성 평가)

  • Kim, Taek Young;Lee, Man Suk;Lim, Woong;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.1-5
    • /
    • 2013
  • In order to evaluate fatigue endurance for an MTB(mountain bike) frame, FEM(finite element method) analysis was performed. For evaluating the fatigue endurance of the MTB frame, the S-N data for Al-6061 fillet weldment were compared with the stress analysis results through FEM analysis of the frame. Three loading condition, pedalling, horizontal and vertical loading conditions were considered for fatigue endurance evaluation. Horizontal loading(+1200 N) condition was found to be the most severe to the frame. The maximum von Mises stress of the frame under horizontal loading(+1200 N) condition was determined 294 MPa through FEM analysis of the frame. Conclusively, on the basis of fatigue strength of 200 MPa at the number of cycles of 50,000, the MTB frame has an improper safety factor of approximately 0.25, suggesting that this frame needs reinforcement.

Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization

  • Mahmoudi, Sayyed Mostafa;Rad, Milad Mansouri;Ochbelagh, Dariush Rezaei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3665-3674
    • /
    • 2021
  • One of the important parts of the in-core fuel management is loading pattern optimization (LPO). The loading pattern optimization as a reasonable design of the in-core fuel management can improve both economic and safe aspects of the nuclear reactor. This work proposes the hybrid of fuzzy logic controller with harmony search algorithm (HS) for loading pattern optimization in a pressurized water reactor. The music improvisation process to find a pleasing harmony is inspiring the harmony search algorithm. In this work, the adjustment of the harmony search algorithm parameters such as the bandwidth and the pitch adjustment rate are increasing performance of the proposed algorithm which is done through a fuzzy logic controller. Hence, membership functions and fuzzy rules are designed to improve the performance of the HS algorithm and achieve optimal results. The objective of the method is finding an optimum core arrangement according to safety and economic aspects such as reduction of power peaking factor (PPF) and increase of effective multiplication factor (Keff). The proposed approach effectiveness has been tried in two cases, Michalewicz's bivariate function problem and NEACRP LWR core. The results show that by using fuzzy harmony search algorithm the value of the fitness function is improved by 15.35%. Finally, with regard to the new solutions proposed in this research it could be used as a trustworthy method for other optimization issues of engineering field.

Reassessment of Validity and Reliability of the Tools for Measuring Yangseng -Focused on the Elderly People in Jeonbuk Area- (양생측정도구의 타당도와 신뢰도 재검증 -전북지역 노인을 중심으로-)

  • Jung, Hae-Kyoung;Kwon, So-Hee;Kim, Ae-Jung;Wang, Myoung-Ja;Lee, Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.9 no.1
    • /
    • pp.17-36
    • /
    • 2005
  • The objective of this study is to present basic data for producing tools to measure Yangseng of the elderly aged older than 65 by reassessing the validity and reliability of such tools already developed. In the present study, total 855 subjects were divided into 4 groups and given 31 question for the ultimate factor analysis of each item. The results cloud be summarized as follows: 1. In case of 'don't have sex in drunken state or right after dinner'(the 31st item of sex live yangseng). factor loading came out proportionally in 3 factors such as factor 4=0.358, factor 5=0.389 and factor 6=0.386. As they all failed to reach the general standard of 0.5 or more and even the minimum standard of 0.4 or more, the 31st item was deleted from the questionnaires. 2. From the factor analysis after exclusion of the 31st item, factor loading of the 25th item of sleep yangseng 'go to bed and get up regularly' appeared to be proportional in 2 factor(factor 4=0.393 and factor 7=0.373). Since it was shown that the 25th item could not be classified into a category but interacted with others in common and didn't satisfy the minimum standard of 0.4, it was deleted form the questionnaires, too. 3. From the factor analysis conducted after excluding the item numbers 31 and 25, factor loading of the 12th item of diet yangseng 'do not eat much' turned out to be relatively high with such values as factor 5=0.518 and factor 3=0.453. As it was, however, tied up with the factor of exercise yangseng, it was also deleted. In conclusion, 28 items after excluding the item numbers 12, 25 and 31 form 4 group showed the same results as divided into 8 factor with high grade of reliability and validity, evidencing the assumption that they can be employed practically to measure yangseng of the elderly aged 65 and oder.

  • PDF

Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads (이동하중의 편측재하에 따른 단순교의 충격계수 및 응답계수 변화 분석)

  • Hong, Sanghyun;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.105-113
    • /
    • 2018
  • The proposed model to predict the bridge load carrying capacity uses the impact response spectrum. The spectrum is based on Euler-Bernoulli beam and the center of the bridge width for the moving load location. Therefore, it is necessary to investigate the eccentric moving load effects on the impact factor and response factor. For this, this study considers 10 m width and two-lane simply supported slab bridges and performs the moving load analysis to investigate the variations of peak impact factor and corresponding response factor. The numerical results show that the eccentric load increases both the static and dynamic displacements, but the impact factor is decreased since the incremental amount of static displacement is bigger than that of dynamic displacement. However, the difference of the impact factors between the center and eccentric loadings is small showing less than 0.5%p. In the response factor, the eccentric loading increases both the static and dynamic response factors, compared to the center loading. The difference of the response factor is only 0.18%p. It shows that the eccentric loading has very small effects on the response factor, thus the impact factor response spectrum which is generated based on the center moving load can be used to determine the response factor.

Characteristics of Static Loading and Dynamic Loading Tests for Bridge Capability (교량 내하력 평가를 위한 정적재하시험 및 동적재하시험 특성)

  • Lee, Sang Hun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.638-649
    • /
    • 2020
  • Purpose: The objective of this study is to evaluate the load carrying capacity of a target bridge structure based on the simple slab bridge of concrete over 20 years of public service. Method: By performing static loading test and dynamic loading test, the displacement, strain, impact factor, and natural frequency values were measured and evaluated through analysis method. Result: The main results of this study are as follows. First, the maximum displacement and maximum strain of S1 were assessed at 2.917 mm and 44.720 𝜇ε( tensile) and -13.760 𝜇ε(compression), respectively, with S2 maximum displacement and maximum strain being 2.100 mm and 4.870 𝜇ε(tensile), respectively. Second, the maximum measured impact factor was 0.191 in section S1 A-A, and the maximum measured impact factor was 0.155 in section S2 C-C. Third, the natural frequency was assessed at 6.086 Hz, and the measurement was found to be within the range of 6.152 Hz to 6.738 Hz. Conclusion: The tested bridge may be evaluated to show good behavior and characteristics for the design load.