• Title/Summary/Keyword: face-centered cubic (fcc)

Search Result 37, Processing Time 0.02 seconds

Characterization of the Microstructure and the Wear Resistance of the Flame-Quenched Cu-8.8Al-4.5Ni-4.5Fe Alloy (화염급냉 표면처리된 Cu-8.8Al-4.5Ni-4.5Fe 합금의 미세구조 분석 및 내마모성에 관한 연구)

  • Lee, M.K.;Hong, S.M.;Kim, G.H.;Kim, K.H.;Kim, W.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.6
    • /
    • pp.346-355
    • /
    • 2004
  • The flame quenching process has been employed to modify the surfaces of commercial marine propeller material, aluminum bronze alloy (Cu-8.8Al-5Ni-5Fe), and the microstructure, hardness and wear properties of the flame-quenched layers have been studied. The thermal history was accurately monitored during the process with respect to both the designed maximum surface temperature and holding time. The XRD and EDX analyses have shown that at temperatures above $T_{\beta}$, the microstructure consisting of ${\alpha}+{\kappa}$ phases changed into the ${\alpha}+{\beta}^{\prime}$ martensite due to an eutectoid reaction of ${\alpha}+{\kappa}{\rightarrow}{\beta}$ and a martensitic transformation of ${\beta}{\rightarrow}{\beta}^{\prime}$. The ${\beta}^{\prime}$ martensite phase formed showed a face-centered cubic (FCC) crystal structure with the typical twinned structure. The hardness of the flame-quenched layer having the ${\alpha}+{\beta}^{\prime}$ structure was similar to that of the ${\alpha}+{\kappa}$ structure and depended sensitively on the size and distribution of hard ${\kappa}$ and ${\beta}^{\prime}$ phases with depth from the surface. As a result of the sliding wear test, the wear resistance of the flame-quenched layer was markedly enhanced with the formation of the ${\beta}^{\prime}$ martensite.

A Study on Electro-oxidation of Ethanol with $Pt_5Ru_4M$(M= Ni, Sn, Mo and W) Ternary Electrocatalysts for Anode of Direct Ethanol Fuel Cell(DEFC) (직접 에탄올 연료전지(DEFC)의 anode용 삼원소 전극촉매[$Pt_5Ru_4M$(M= Ni, Sn, Mo and W)]의 에탄올 전기산화반응에 관한 연구)

  • Noh, Chang-Soo;Kang, Dae-Kyu;Sohn, Jung-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.423-429
    • /
    • 2008
  • This work was carried out to improve the performance of anodic electrocatalysts in direct ethanol fuel cell(DEFC). PtRu and $Pt_5Ru_4M$(M= Ni, Sn, Mo and W) electrocatalysts were prepared by using a $NaBH_4$ reduction method. Alloy crystal structure and particle size of electrocatalysts were characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The XRD analysis of the electrocatalysts revealed that the face-centered cubic(fcc) peaks shifted to slightly higher diffraction angles when third metals were added. Average size of the uniform particles was observed to be approximately $3{\sim}3.5\;nm$ from the TEM image. The electrochemical measurements were carried out in the solution 1M $H_2SO_4$ and 1M $C_2H_5OH$ at room temperature. Cyclic-voltammogram results showed that $Pt_5Ru_4W$ electrocatalyst exhibited much higher current density for ethanol oxidation of $2.73\;mA/cm^2$ than PtRu electrocatalyst of $0.73\;mA/cm^2$.

Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC (탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성)

  • Jung, Dong-Won;Park, Soon;Kang, Jung-Tak;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

Synthesis of Nano Sized Cobalt Powder from Cobalt Sulfate Heptahydrate by Liquid Phase Reduction (액상환원공정을 이용한 황산코발트로부터의 코발트 나노분말 합성)

  • An, Se-Hwan;Kim, Se-Hoon;Lee, Jin-Ho;Hong, Hyun-Seon;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.327-333
    • /
    • 2011
  • Nanostructured cobalt materials have recently attracted considerable attention due to their potential applications in high-density data storage, magnetic separation and heterogeneous catalysts. The size as well as the morphology at the nano scale strongly influences the physical and chemical properties of cobalt nano materials. In this study, cobalt nano particles synthesized by a a polyol process, which is a liquid-phase reduction method, were investigated. Cobalt hydroxide ($Co(OH)_2$), as an intermediate reaction product, was synthesized by the reaction between cobalt sulphate heptahydrate ($CoSO_4{\cdot}7H_2O$) used as a precursor and sodium hydroxide (NaOH) dissolved in DI water. As-synthesized $Co(OH)_2$ was washed and filtered several times with DI water, because intermediate reaction products had not only $Co(OH)_2$ but also sodium sulphate ($Na_2SO_4$), as an impurity. Then the cobalt powder was synthesized by diethylene glycol (DEG), as a reduction agent, with various temperatures and times. Polyvinylpyrrolidone (PVP), as a capping agent, was also added to control agglomeration and dispersion of the cobalt nano particles. The optimized synthesis condition was achieved at $220^{\circ}C$ for 4 hours with 0.6 of the PVP/$Co(OH)_2$ molar ratio. Consequently, it was confirmed that the synthesized nano sized cobalt particles had a face centered cubic (fcc) structure and with a size range of 100-200 nm.

Characteristics of Cu-Doped Ge8Sb2Te11 Thin Films for PRAM (PRAM용 Cu-도핑된 Ge8Sb2Te11 박막의 특성)

  • Kim, Yeong-Mi;Kong, Heon;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.376-381
    • /
    • 2019
  • In this work, we evaluated the structural, electrical and optical properties of $Ge_8Sb_2Te_{11}$ and Cu-doped $Ge_8Sb_2Te_{11}$ thin films prepared by rf-magnetron reactive sputtering. The 200-nm-thick deposited films were annealed in a range of $100{\sim}400^{\circ}C$ using a furnace in an $N_2$ atmosphere. The amorphous-to-crystalline phase changes of the thin films were investigated by X-ray diffraction (XRD), UV-Vis-IR spectrophotometry, a 4-point probe, and a source meter. A one-step phase transformation from amorphous to face-centered-cubic (fcc) and an increase of the crystallization temperature ($T_c$) was observed in the Cu-doped film, which indicates an enhanced thermal stability in the amorphous state. The difference in the optical energy band gap ($E_{op}$) between the amorphous and crystalline phases was relatively large, approximately 0.38~0.41 eV, which is beneficial for reducing the noise in the memory devices. The sheet resistance($R_s$) of the amorphous phase in the Cu-doped film was about 1.5 orders larger than that in undoped film. A large $R_s$ in the amorphous phase will reduce the programming current in the memory device. An increase of threshold voltage ($V_{th}$) was seen in the Cu-doped film, which implied a high thermal efficiency. This suggests that the Cu-doped $Ge_8Sb_2Te_{11}$ thin film is a good candidate for PRAM.

Characterization of the Manufacturing Process and Mechanical Properties of CoCrFeMnNi High-Entropy Alloys via Metal Injection Molding and Hot Isostatic Pressing

  • Eun Seong Kim;Jae Man Park;Do Won Lee;Hyojeong Ha;Jungho Choe;Jaemin Wang;Seong Jin Park;Byeong-Joo Lee;Hyoung Seop Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.243-254
    • /
    • 2024
  • High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200℃, 1250℃, and 1275℃. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150℃) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275℃ MIM process. The HIP process can improve the quality of the alloy.

Effects of PtMn composition on carbon supported PtMn catalysts for PEMFC (Mn조성비(組成比)가 PEMFC용(用) Pt/C 전극촉매(電極觸媒) 특성(特性)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.34-40
    • /
    • 2012
  • $Pt_{10}$/C, $Pt_9Mn_1$/C, $Pt_7Mn_3$/C electrocatalysts for Polymer Electrolyte Membrane Fuel Cells(PEMFCs) were synthesized by reduction with HCHO and their activity as a oxygen reduction reaction(ORR) was examined at half cell. The electrochemical oxygen reduction reaction(ORR) was studied by using a glaasy carbon electrode through cyclic voltammetric curves(CV) in a 1 M $H_2SO_4$ solution. The ORR activities of $Pt_9Mn_1$/C were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Also potential-current curves of $Pt_9Mn_1$/C at 0.9, 0.8, 0.7, 0.6V for 5minutes respectively were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Physical characterization was made by using x-ray diffraction(XRD) and transmission electron microscope(TEM). The TEM images of $Pt_9Mn_1$/C, $Pt_{10}$/C catalysts showed homogenous particle distribution with particle size of about 2.7 nm, 3 nm respectively and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.