• 제목/요약/키워드: face pressure

검색결과 503건 처리시간 0.026초

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

In Search of a Performing Seal: Rethinking the Design of Tight-Fitting Respiratory Protective Equipment Facepieces for Users With Facial Hair

  • Meadwell, James;Paxman-Clarke, Lee;Terris, David;Ford, Peter
    • Safety and Health at Work
    • /
    • 제10권3호
    • /
    • pp.275-304
    • /
    • 2019
  • Background: Air-purifying, tight-fitting facepieces are examples of respiratory protective equipment and are worn to protect workers from potentially harmful particulate and vapors. Research shows that the presence of facial hair on users' face significantly reduces the efficacy of these devices. This article sets out to establish if an acceptable seal could be achieved between facial hair and the facepiece. The team also created and investigated a low-cost "pressure testing" method for assessing the efficacy of a seal to be used during the early design process for a facepiece designed to overcome the facial hair issue. Methods: Nine new designs for face mask seals were prototyped as flat samples. A researcher developed a test rig, and a test protocol was used to evaluate the efficacy of the new seal designs against facial hair. Six of the seal designs were also tested using a version of the conventional fit test. The results were compared with those of the researcher-developed test to look for a correlation between the two test methods. Results: None of the seals performed any better against facial hair than a typical, commercially available facepiece. The pressure testing method devised by the researchers performed well but was not as robust as the fit factor testing. Conclusion: The results show that sealing against facial hair is extremely problematic unless an excessive force is applied to the facepiece's seal area pushing it against the face. The means of pressure testing devised by the researchers could be seen as a low-cost technique to be used at the early stages of a the design process, before fit testing is viable.

천공데이터를 이용한 터널 굴진면 전방 암반강도 예측 (Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data)

  • 김광염;김성권;김창용;김광식
    • 터널과지하공간
    • /
    • 제19권6호
    • /
    • pp.479-489
    • /
    • 2009
  • 터널 굴착시 굴진면 전방의 지반상태를 사전에 파악하는 것은 터널의 안정성을 증가시킴과 동시에 시공성을 향상시켜 경제적인 터널 시공을 할 수 있도록 한다. 이에 본 연구에서는 터널 천공시 획득되는 천공데이터를 이용하여 굴진면 전방의 암반강도를 예측하고자 하였다. 이는 암반강도가 현장에서 암반분류 및 지보패턴 설계 등의 핵심인자로 가장 보편적으로 활용될 뿐만 아니라, 암반강도의 변화를 통해 굴진면 전방의 지반상태 변화를 예측하는데도 활용할 수 있기 때문이다. 이를 위해 본 연구에서는 다양한 강도 특성을 보이는 균질한 암석시험편을 대상으로 착암기 종류를 변화시켜가며 천공실험을 수행하였다. 실험결과 천공속도는 다른 천공데이터들과 착암기의 종류 및 암석의 강도에 따라 고유한 값을 보이는 것으로 나타났다. 또한, 동일한 암석에 대해 천공시 타격압이 증가하면 천공속도는 선형적으로 비례하여 증가하는 것으로 나타났다. 이러한 결과를 바탕으로 본 연구에서는 터널 시공 현장에서 착암기의 제원, 현장 계측 데이터 및 천공속도와 암반강도의 상관관계를 이용하여 터널 굴진면 전방의 암반강도를 예측할 수 있는 방안을 제안하였다.

안면 이미지 데이터를 이용한 실시간 생체징후 측정시스템 (Real-time Vital Signs Measurement System using Facial Image Data)

  • 김대열;김진수;이광기
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.132-142
    • /
    • 2021
  • 본 연구는 실생활에서 가장 많이 접할 수 있는 모바일 전면 카메라를 이용하여 심장박동, 심장박동 변이율, 산소포화도, 호흡도, 스트레스수치, 혈압을 측정할 수 있는 효과적인 방법론을 제시하는 것이 목적이다. Blaze Face를 이용하여 실시간으로 얼굴인식을 진행하여 안면 이미지 데이터를 취득하고 눈, 코 입, 귀의 특징 점을 이용하여 이마를 관심영역으로 지정하며 평균값을 시간 축으로 정렬한 후 생체징후 측정에 이용하였다. 생체징후 측정 기법은 fourier transform을 기본으로 이용하였으며, 측정하고자 하는 생체징후에 맞게 노이즈 제거 및 필터 처리함으로써 측정값의 정확도를 향상 시켰다. 결과를 검증하기 위해 접촉식 센서와 비접촉식 센서 비교를 진행하였다. 분석 결과 안면 이미지를 이용하여 심장박동, 심장 박동 변이율, 산소포화도, 호흡도, 스트레스, 혈압 총 여섯 가지 생체 징후를 추출 할 수 있는 가능성을 확인하였다.

흡수식 냉동기용 엘리미네이터의 압력손실 및 액적유입 특성 (Pressure Drop and Refrigerant-Entrainment Characteristics of the Eliminators used in Absorption Chillers)

  • 정시영;류진상;이상수;이정주
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.109-115
    • /
    • 2003
  • The performance of two vertical-blade eliminators (V1, V2) and two horizontal-blade ones (H1, H2) for absorption chillers were tested in terms of pressure drop and refrigerant entrainment. The test was carried out using a wind tunnel with a cross section of 300 mm$\times$300 mm. The pressure drop of four eliminators tested was found to be in the rage of 1.0~2.7mm $H_2O$ at the face velocity of 2m/s. In the refrigerant entrainment test the vertical-blade eliminators showed much better performance than the horizontal-blade ones. The horizontal-blade eliminators showed satisfactory results at the air velocity of 2m/s but exceeded the limit value at 3 m/s. Since the cooling capacity of a machine is lowered by about 2.5% at the pressure drop of 1 m $H_2O$, more researches are required to reduce the pressure drop in the eliminator.

인쇄성능 향상을 위한 롤코터용 임프레션 실린더의 압력 제어 (New Approach to Pressure Control of a Impression Cylinder for Roll Coater)

  • 윤소남;함영복;박중호
    • 동력기계공학회지
    • /
    • 제13권3호
    • /
    • pp.59-64
    • /
    • 2009
  • This study presents a new approach to pressure control of a impression cylinder for roll coater which is a kind of face pressure control between blanket roll and impression roll. Roll-to-Roll method for printing is a very useful tool for mass production such as RFID elements, smart sensors and solar cell devices. In this study, a decupling control strategy of the roll coater which is a combination of a cylinder system, a dry system and two pressure regulators with two pneumatic cylinders was discussed. Also, the characteristics of component such as a pressure regulator having a pressure reducing function and the movement of a blanket roll and a impression cylinder were analyzed using the Matlab software. From this results, the techniques of a shock and a vibration reduction were suggested.

  • PDF

체압분포 측정을 이용한 수면자세 인식 (Recognizing Sleeping Posture on Bed by using the Measurement of Body Pressure Distribution)

  • 권규식;김진선;박세진
    • 산업경영시스템학회지
    • /
    • 제22권52호
    • /
    • pp.211-219
    • /
    • 1999
  • Sleeping is important activity in bedroom and it takes one third of our lifetime. The body pressure distribution on bed has been considered as one of the most important factors affecting sleeping comfort. The measurement contact pressure has been applied to design seat, mattress, shoes, etc., for prevention of pressure sores and improvement of products. This paper discusses the recognizing rule of sleeping posture using contact pressure. Subjects' ages are ranged from twenties to fifties. They include 29 males and 35 females. Body pressure distribution is measured in the state of stable bed when subject lies on his/her back, on his/her side and on his/her face. We made recognizing rules of sleeping posture through statistical analysis; ANOVA and regression analysis, qualitative analysis.

  • PDF

Robust Design for Showerhead Thermal Deformation

  • 공대위;김호준;이승무;원제형
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

외관검사를 통한 한국형 철근자동가스압접기의 압접성능 연구 (A study on the welding performance of korean automatic gas pressure welding machine by external appearance investigation)

  • 서덕석
    • 한국건축시공학회지
    • /
    • 제8권6호
    • /
    • pp.161-166
    • /
    • 2008
  • This study is focused on the welding performance of automatic gas pressure welding machine adapted to korean construction site by external appearance investigation. As gas pressure welding is more economical and has good performances compared with other steel bar jointing methods, as arc welding and mechanical joint etc, in Japan, the gas pressure welding is one of the typical connection of steel reinforcement when connecting the D29 and thicker steel bars, But in Korea, gas pressure welding joint method is not widely used caused by the shortage of skilled workers. so to activate the gas pressure welding in Korea, the automatic gas pressure welding machine is developed. In this study, the welding performances of gas pressure welding joint samples using korean automatic gas pressure welding machine are measured by external appearance investigation - blown diameters, blown length, welding face disagreement, central axis eccentric ratio, bending, sag and crack. The results of welding performances on the gas pressure welding joint samples show that samples are satisfied with the standard value regulated in KS D 0244 and JIS Z 3120.