• Title/Summary/Keyword: face pressure

Search Result 499, Processing Time 0.026 seconds

Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests - (침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 -)

  • 이인모;안재훈;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.

A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure (가변 공기압력 초경면 연마기의 성능 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The comparisons of performance characteristics between the super-mirror face grinding machine using variable air pressure developed in this laboratory to grind precisely the sliding face of a surface hardened workpiece with thermal spray and the conventional one are investigated by measuring the surface roughness and hardness for a SCM440. To process variously workpiece according to shape, size and materials, the rotating and contacting forces of the developed grinding machine can be changed by air pressure. The surface roughness of processed workpiece can be also attained to state of mirror face by grinding precisely the sliding face with changing the rotating speed of diamond wheel. It is possible to be attached to the various machine tools because the super-mirror face grinding machine using variable air pressure is a small size. The grinding efficiency is elevated because it can be worked by two or more grinding machines attached to concurrently a machine tool for the large workpiece. In this study, results show that the cusp height of the super-mirror face grinding machine for the particle size of 100 and $1500No./mm^2$ is lower than that of the conventional one because the vibration is reduced by rotating very fast the diamond wheel with a pressed air and it can be processed by rotating the diamond wheel with a constantly varied air pressure perpendicular to workpiece surface, and that the workpiece in the super-mirror face grinding machine for the particle size of $3000No./mm^2$ can be processed to state of mirror face that is rarely seen by the cusp height. It is also found that the surface hardness of both the conventional and the super-mirror face grinding machines are increased as the particle size of diamond wheel is reduced, and the surface hardness of the super-mirror face grinding machine is HRC 1.1 ~ 1.8 higher than that of the conventional one.

Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling (정면밀링에서 공구경사각에 따른 비절삭저항 변화)

  • 류시형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Critical face pressure and backfill pressure in shield TBM tunneling on soft ground

  • Kim, Kiseok;Oh, Juyoung;Lee, Hyobum;Kim, Dongku;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.823-831
    • /
    • 2018
  • The most important issue during shield TBM tunneling in soft ground formations is to appropriately control ground surface settlement. Among various operational conditions in shield TBM tunneling, the face pressure and backfill pressure should be the most important and immediate measure to restrain surface settlement during excavation. In this paper, a 3-D hydro-mechanical coupled FE model is developed to numerically simulate the entire process of shield TBM tunneling, which is verified by comparing with real field measurements of ground surface settlement. The effect of permeability and stiffness of ground formations on tunneling-induced surface settlement was discussed in the parametric study. An increase in the face pressure and backfill pressure does not always lead to a decrease in surface settlement, but there are the critical face pressure and backfill pressure. In addition, considering the relatively low permeability of ground formations, the surface settlement consists of two parts, i.e., immediate settlement and consolidation settlement, which shows a distinct settlement behavior to each other.

Effect of a Frontal Impermeable Layer on the Excess Slurry Pressure during the Shield Tunnelling (전방 차수층이 쉴드터널 초과 이수압에 미치는 영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1199-1213
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, but low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. As results, larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0~1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

  • PDF

A Intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis (이론해와 수치해석적 검토를 통한 쉴드TBM 막장압 산정 결과 상호비교)

  • Jun, Gy-Chan;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.273-282
    • /
    • 2016
  • This study estimates tunnel face pressure through existing 8 analytical equations and 3D numerical analysis, and compares and examines it. In general, the estimating tunnel face pressure of domestic shield TBM has been examined by a method according to analytical equation and empirical method, but numerical analysis is combined in a section passing complicated stratigraphic condition and special soil condition. Therefore, the researcher is to find a reliable method to examine of tunnel face pressure by confirming a correlation between tunnel face pressure estimated by equation and tunnel face pressure estimated by numerical analysis program. When tunnel face pressure is estimated, both analytical equation and numerical analysis were identically examined in soil conditions such as sandy soil and cohesive soil. In addition, existing analytical equation is used as equation, and 3D analysis copying construction process and shield tunnel as numerical analysis.

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang;Qing-Heng Gu;Meng Zhang;Cheng-Yang Jia;Bao-Liang Zhang;Jian-Hang Wang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.427-440
    • /
    • 2024
  • This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.