• Title/Summary/Keyword: face area detection

Search Result 168, Processing Time 0.027 seconds

Realtime Facial Expression Data Tracking System using Color Information (컬러 정보를 이용한 실시간 표정 데이터 추적 시스템)

  • Lee, Yun-Jung;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.159-170
    • /
    • 2009
  • It is very important to extract the expression data and capture a face image from a video for online-based 3D face animation. In recently, there are many researches on vision-based approach that captures the expression of an actor in a video and applies them to 3D face model. In this paper, we propose an automatic data extraction system, which extracts and traces a face and expression data from realtime video inputs. The procedures of our system consist of three steps: face detection, face feature extraction, and face tracing. In face detection, we detect skin pixels using YCbCr skin color model and verifies the face area using Haar-based classifier. We use the brightness and color information for extracting the eyes and lips data related facial expression. We extract 10 feature points from eyes and lips area considering FAP defined in MPEG-4. Then, we trace the displacement of the extracted features from continuous frames using color probabilistic distribution model. The experiments showed that our system could trace the expression data to about 8fps.

Implementation of Driver Fatigue Monitoring System (운전자 졸음 인식 시스템 구현)

  • Choi, Jin-Mo;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.711-720
    • /
    • 2012
  • In this paper, we introduce the implementation of driver fatigue monitering system and its result. Input video device is selected commercially available web-cam camera. Haar transform is used to face detection and adopted illumination normalization is used for arbitrary illumination conditions. Facial image through illumination normalization is extracted using Haar face features easily. Eye candidate area through illumination normalization can be reduced by anthropometric measurement and eye detection is performed by PCA and Circle Mask mixture model. This methods achieve robust eye detection on arbitrary illumination changing conditions. Drowsiness state is determined by the level on illumination normalize eye images by a simple calculation. Our system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. Our algorithm is implemented with low computation complexity and high recognition rate. We achieve 97% of correct detection rate through in-car environment experiments.

A Study on Cascaded CNN Accuracy for Face Detection (얼굴 검출을 위한 캐스케이드 CNN 정확도에 관한 연구)

  • Joseline, Uwinema;Lee, Hae-Yeoun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.232-235
    • /
    • 2018
  • Convolutional Neural Network is arguably the most popular deep learning architecture that is one of the most attractive area of research since it has various applications including face detection and recognition. The cascaded CNN operates at multiple resolution and rejects the background regions in the fast low resolution stages. By considering that advantage, we carry out the study on accuracy of cascaded CNN for face detection applications. The key point for our study is to analysing and improving the accuracy of cascaded CNN by applying simulations of algorithm where by we used Google's Tensorflow GPU as deep learning framework.

A Study on High Speed Face Tracking using the GPGPU-based Depth Information (GPGPU 기반의 깊이 정보를 이용한 고속 얼굴 추적에 대한 연구)

  • Kim, Woo-Youl;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1119-1128
    • /
    • 2013
  • In this paper, we propose an algorithm to detect and track the human face with a GPU-based high speed. Basically the detection algorithm uses the existing Adaboost algorithm but the search area is dramatically reduced by detecting movement and skin color region. Differently from detection process, tracking algorithm uses only depth information. Basically it uses a template matching method such that it searches a matched block to the template. Also, In order to fast track the face, it was computed in parallel using GPU about the template matching. Experimental results show that the GPU speed when compared with the CPU has been increased to up to 49 times.

Research of the Face Extract Algorithm from Road Side Images Obtained by vehicle (차량에서 획득된 도로 주변 영상에서의 얼굴 추출 방안 연구)

  • Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Moon-Gie;Yun, Duk-Geun;Sung, Jung-Gon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • The face extraction is very important to provide the images of the roads and road sides without the problem of privacy. For face extraction form roadside images, we detected the skin color area by using HSI and YCrCb color models. Efficient skin color detection was achieved by using these two models. We used a connectivity and intensity difference for grouping, skin color regions further we applied shape conditions (rate, area, number and oval condition) and determined face candidate regions. We applied thresholds to region, and determined the region as the face if black part was over 5% of the whole regions. As the result of the experiment 28 faces has been extracted among 38 faces had problem of privacy. The reasons which the face was not extracted were the effect of shadow of the face, and the background objects. Also objects with the color similar to the face were falsely extracted. For improvement, we need to adjust the threshold.

  • PDF

Face Detection System Based on Candidate Extraction through Segmentation of Skin Area and Partial Face Classifier (피부색 영역의 분할을 통한 후보 검출과 부분 얼굴 분류기에 기반을 둔 얼굴 검출 시스템)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this paper we propose a face detection system which consists of a method of face candidate extraction using skin color and a method of face verification using the feature of facial structure. Firstly, the proposed extraction method of face candidate uses the image segmentation and merging algorithm in the regions of skin color and the neighboring regions of skin color. These two algorithms make it possible to select the face candidates from the variety of faces in the image with complicated backgrounds. Secondly, by using the partial face classifier, the proposed face validation method verifies the feature of face structure and then classifies face and non-face. This classifier uses face images only in the learning process and does not consider non-face images in order to use less number of training images. In the experimental, the proposed method of face candidate extraction can find more 9.55% faces on average as face candidates than other methods. Also in the experiment of face and non-face classification, the proposed face validation method obtains the face classification rate on the average 4.97% higher than other face/non-face classifiers when the non-face classification rate is about 99%.

Face Detection Using Skin Color and Geometrical Constraints of Facial Features (살색과 얼굴 특징들의 기하학적 제한을 이용한 얼굴 위치 찾기)

  • Cho, Kyung-Min;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.107-119
    • /
    • 1999
  • There is no authentic solution in a face detection problem though it is an important part of pattern recognition and has many diverse application fields. The reason is that there are many unpredictable deformations due to facial expressions, view point, rotation, scale, gender, age, etc. To overcome these problems, we propose an algorithm based on feature-based method, which is well known to be robust to these deformations. We detect a face by calculating a similarity between the formation of real face feature and candidate feature formation which consists of eyebrow, eye, nose, and mouth. In this paper, we use a steerable filter instead of general derivative edge detector in order to get more accurate feature components. We applied deformable template to verify the detected face, which overcome the weak point of feature-based method. Considering the low detection rate because of face detection method using whole input images, we design an adaptive skin-color filter which can be applicable to a diverse skin color, minimizing target area and processing time.

  • PDF

Detecting Faces on Still Images using Sub-block Processing (서브블록 프로세싱을 이용한 정지영상에서의 얼굴 검출 기법)

  • Yoo Chae-Gon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.417-420
    • /
    • 2006
  • Detection of faces on still color images with arbitrary backgrounds is attempted in this paper. The newly proposed method is invariant to arbitrary background, number of faces, scale, orientation, skin color, and illumination through the steps of color clustering, cluster scanning, sub-block processing, face area detection, and face verification. The sub-block method makes the proposed method invariant to the size and the number of faces in the image. The proposed method does not need any pre-training steps or a preliminary face database. The proposed method may be applied to areas such as security control, video and photo indexing, and other automatic computer vision-related fields.

Facial-feature Detection in Color Images using Chrominance Components and Mean-Gray Morphology Operation (색도정보와 Mean-Gray 모폴로지 연산을 이용한 컬러영상에서의 얼굴특징점 검출)

  • 강영도;양창우;김장형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.714-720
    • /
    • 2004
  • In detecting human faces in color images, additional geometric computation is often necessary for validating the face-candidate regions having various forms. In this paper, we propose a method that detects the facial features using chrominance components of color which do not affected by face occlusion and orientation. The proposed algorithm uses the property that the Cb and Cr components have consistent differences around the facial features, especially eye-area. We designed the Mean-Gray Morphology operator to emphasize the feature areas in the eye-map image which generated by basic chrominance differences. Experimental results show that this method can detect the facial features under various face candidate regions effectively.

Image Enhancement Method Research for Face Detection (얼굴 검출을 위한 영상 향상 방법 연구)

  • Jun, In-Ja;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.13-21
    • /
    • 2009
  • This paper describes research of image enhancement for detection of face area. Typical face recognition algorithms used fixed parameter filtering algorithms to optimize face images for the recognition process. A fixed filtering scheme introduces errors when applied to face images captured in various different environmental conditions. For acquiring face image of good quality from the image including complex background and illumination, we propose a method for image enhancement using the categories based on the image intensity values. When an image is acquired average values of image from sub-window are computed and then compared to training values that were computed during preprocessing. The category is selected and the most suitable image filter method is applied to the image. We used histogram equalization, and gamma correction filters with two different parameters, and then used the most suitable filter among those three. An increase in enrollment of filtered images was observed compared to enrollment rates of the original images.