• Title/Summary/Keyword: fabry-perot

Search Result 302, Processing Time 0.017 seconds

Ionospheric and Upper Atmospheric Observations in Korea (국내 우주환경 자료 보유 현황: 전리권/고층대기)

  • Lee, Changsup;Lee, Woo Kyoung;Division of Solar and Space Environment of KSSS,
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.199-216
    • /
    • 2021
  • In 2020, the solar and space environment division at the Korea Space Science Society surveyed the status of data archives in solar physics, magnetosphere, and ionosphere/upper atmosphere in Korea to promote broader utilization of the data and research collaboration. The survey includes ground- and satellite-based instruments and developing models by research institutes and universities in Korea. Based on the survey results, this study reports the status of the ground-based instruments, data products in the ionosphere and upper atmosphere, and documentation of them. The ground-based instruments operated by the Korea Polar Research Institute and Korea Astronomy and Space Science Institute include ionosonde, Fabry-Perot interferometer in Arctic Dasan stations, Antarctic King Sejong/Jang Bogo stations, and an all-sky camera, VHF radar in Korea. We also provide information on total electron content and scintillation observations derived from the Global Navigation Satellite System (GNSS) station networks in Korea. All data are available via the webpage, FTP, or by request. Information on ionospheric data and models is available at http://ksss.or.kr. We hope that this report will increase data accessibility and encourage the research community to engage in the establishment of a new Space Science Data Ecosystem, which supports archiving, searching, analyzing, and sharing the data with diverse communities, including educators, industries, and the public as wells as the research scientist.

A STUDY ON TEMPERATURE VARIATION OF THE UPPER THERMOSPHERE IN THE HIGH LATITUDE THROUGH THE ANALYSIS OF 6300 $\AA$ AIRGLOW DATA (6300 $\AA$ 대기광 자료 분석을 통한 고위도 열권 상부에서의 온도 변화)

  • 정종균;김용하;원영인;이방용
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.94-108
    • /
    • 1997
  • The temperature of the upper thermosphere is generally varied with the solar activity, and largely with geomagnetic activity in the high latitude. The data analyzed in this study are acquired at two ground stations, Thule Air Base($76,5{deg} N, 68.4{deg} W, A = 86{deg}$) and $S{psi}ndre Str{psi}mfjord (67.0{deg} N, 50.9{deg} W, A = 74{deg}$), Greenland. Both stations are located in the high latitude not only geographically but also geomagnetically. The terrestrial night glow at 6300 ${angs}$ from atomic oxygen has been observed from the two ground-based Fabry-Perot interferometers, during periods of 1986~1991 in Thule Air Base and 1986~1994 in $S{psi}ndre Str{psi}mfjord$. Some features noted in this study are as follows: (1) The correlation between the solar activity and the measured thermospheric temperature is highest in the case of $3{leq}Kp{leq}4$ in Thule, and increases with the geomagnetic activity in $S{psi}ndre Str{psi}mfjord$. (2) The measured temperatures at Thule is generally higher than those at $S{psi}ndre Str{psi}mfjord$, but the latter shows steeper slope with the solar activity. (3) The harmonic analysis shows that the diurnal variation(24hrs) is the main feature of the daily temperature variation with a temperature peak at about 13-14 LT (LT=UT-4). However, the semi-diurnal variation is evident during the period of weak solar activity. (4) Generally the predicted temperatures from both MSIS86 and VSH models are lower than the measured temperature, and this discrepancy grows as the solar activity increases. Therefore, we urge modelers to develope a new thermospheric model utilizing broader sets of measurements, especially for high solar activity.

  • PDF