• Title/Summary/Keyword: fabric thickness

Search Result 284, Processing Time 0.03 seconds

Study on the wetsuit manufacturing status in Korea and future research task (국내 습식 잠수복 생산 업체의 생산실태 조사 및 향후 연구과제)

  • Shin, Hyun-Suk;Choi, Inyoung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.3
    • /
    • pp.99-108
    • /
    • 2021
  • The present study examines the overall manufacturing status of local wetsuit makers, problems in the manufacturing process, and future research tasks. The study revealed that most manufacturers use neoprene fabric of varying thickness, depending on the body part. Normally, 3 mm-thick fabric is utilized for high-activity body parts and 5 mm-thick fabric is used for high-activity areas requiring thermal insulation. In terms of the manufacturing method, the tools and manufacturing processes used by companies were found to be similar. However, because of the nature of wetsuits requiring a more complicated manufacturing method than that of general clothing, there were some differences in the manufacturing method processes from company to company, such as bonding and ease treatments. According to wetsuit manufacturers, they make incisions in consideration of the body's curvature and the overall shape and design of the wetsuit when developing patterns. For example, most answered that they preform the wrist and ankle parts, where the body's curvature is obvious. On the question regarding the "difficult manufacturing process", the most frequent response was the "bonding" process. Most manufacturers were found to focus on designs that can improve mobility and clothing fit, and commonly experienced low-order quantity as an operational difficulty. As for the question on the wetsuit-related technology needed in the future, the "development of various designs" was the most frequent answer, followed by the "development of lightweight and diverse materials".

Bulletproof Performance of Hybrid Plates using a Composite Laminated with Abalone Shell Fragments (전복껍질 메소절편 기반 복합소재 합판 제작 및 이를 이용한 하이브리드 판재의 방탄특성)

  • Kim, Jeoung Woo;Kang, Dae Won;Paik, Jong Gyu;Youk, Youngki;Park, Jeong Ho;Shin, Sang-Mo
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • Nacre of abalone shell features a "brick-and-mortar" microstructure, in which micro-plates of calcium carbonate are bonded by nanometers-thick layers of chitin and proteins. Due to the microstructure and its unique toughening mechanisms, nacre possesses an excellent combination of specific strength, stiffness and toughness. This study deals with the possibility of using nacre fragments obtained from abalone shell for making a bulletproof armor system. A composite plate laminated with abalone shell fragments is made and compression and bend tests are carried out. In addition, a bulletproof test is performed with hybrid armor systems which are composed of an alumina plate, a composite plate, and aramid woven fabric to verify the ballistic performance of nacre. The compressive strength of the composite plate is around 258.3 MPa. The bend strength and modulus of the composite plate decrease according to the plate thickness and are about 149.2 MPa and 50.3 GPa, respectively, for a 4.85 mm thick plate. The hybrid armor system with a planar density of $45.2kg/m^2$, which is composed of an 8 mm thick alumina plate, a 2.4 mm thick composite plate, and 18 layers of aramid woven fabric, satisfy the NIJ Standard 0101.06 : 2008 Armor Type IV. These results show that a composite plate laminated with abalone shell fragments can be used for a bulletproof armor system as an interlayer between ceramic and fabric to decrease the armor system's weight.

Studies on the Physical Properties of Vinyl Monomers Graft Polymerized Silk Fibre (비닐 단량체 그라프트 중합견의 물성에 관한 연구)

  • 이용우;송기언
    • Journal of Sericultural and Entomological Science
    • /
    • v.27 no.1
    • /
    • pp.47-50
    • /
    • 1985
  • The physical properties of graft polymerized silk fibre were investigated with various vinyl monomers. 1. The graft polymerization of styrene and methyl methacrylate onto raw silk reduced the tenacity and elongation of raw silk due to fixation of sericin covering silk fibre in, but the styrene grafting was more effective for sericin fixation of raw silk than the methyl methacrylate one. 2. The water absorbability of glycidyl methacrylate grafted silk increased 14.6% greater than that of methyl methacrylate grafted silk at the same degree of grafting polymerization. 3. The degree of grafting polymerization was increased mostly with ethylene glycol methacrylate. The water absorbability of ethylene glycol methacrylate grafted silk was higher than that of glycidyl methacrylate or ethyl acrylate grafted silk. But the grafted silk fabric increased the fabric flexural rigidity which was negatively related with the favorability of fabric hand-touch, as compared with that of nongrafted silk fabric. 4. The evenness of graft polymerization could be improved by agitating the polymerization bath at the fixed interval by reducing the inter size deviation of grafted silk skein and the thickness deviation of grafted silk fabric.

  • PDF

Impact Behaviors of Stitched Sandwich Composites Under Low Energy Impact Using Drop Weight Impact Tester (고낙하추 충격시험기를 이용한 스티칭된 샌드위치 복합재의 저에너지 충격거동 연구)

  • 윤성호;이상진;조세현
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.54-64
    • /
    • 1999
  • This study investigated the impact behaviors of the stitched sandwich composites under the low energy impact by the use of drop weight impact tester. These sandwich composites condidted of the glass fabric faces with a urethane foam core. The upper face and the lower face were stitched to combinr through the core thickness direction using the polyester reinforcements. Four types of the stitched sandwich composites, each having a different core thickness, were tested to determine the effects of the core thickness. The impact conditions were changes with the variations of the mass and drop height of the impact tup. The test results showed that the core thickness and the impact condidtions such as the drop height and the mass of the impact tup affected the impact force, the contact time, and the strain behaviors of the stitched sandwich composites. The stitched sandwich composites are able to avert the damage and also maintain the structural integrity even thouth the presence of the damage owing to the through-the-thickness reinforcements. However, it is important to improve the wetting ability of the stitched reinforcements so that the conventional structures are substituted for the stitched sandwich composites effectively.

  • PDF

Objective Sensibility Evaluation of the Acrylic Knitted Fabrics from Various Blended and Twisted Yarns (혼방 및 연사방법에 따른 아크릴 니트소재의 객관적 감성평가)

  • Kim, Mi-Jin;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.8 no.3
    • /
    • pp.17-25
    • /
    • 2006
  • We performed the objective sensibility evaluation on knitted fabrics by the following procedures: setting acrylic fabrics with knitted fabrics as basis, knitted five kinds of blended spun yarns and four kinds of twisted filament yams made by different twisting methods(the amount and direction of twist) then, measuring mechanical properties in the use Kawabata Evaluation System, obtaining hand values and total hand values. The results are as follows: First, A(F)/W acrylic/wool spun knits obtain high scores in bending, compressing, shear properties, MMD, and thickness among five kinds of acrylic-blended knit fabrics. A(S)/W acrylic/wool blended knit represented prominent values at compressing properties and thickness and so wool-blended yams demonstrated superior characters comparing other blended yarns. To contrast, acrylic/rayon blended knits showed low scores in bending properties, shear properties and thickness, so that it affects to total hand values. On the one hand, among the four kinds of acrylic filament knitted fabrics, they do not exhibit any notable dynamic differences such as tensile properties of knitted fabrics by the twist number and direction of filament yarns, bending, shear, compressing properties, weight and thickness except surface properties. Second, fabrics showed the most high score at FUKURAMI (fullness and softness) among the hand values. A(S)/W acrylic/wool blended knits obtaining the lowest values at SAHRI (crispness) outrank at total hand values, so that it was the predominant knitted fabric in objective sensibility evaluation. In total hand values, five kinds of acrylic blended knits got a higher score than four kinds of acrylic filament knits, and the amount and direction of twist did not influence on total hand values among the four kinds of acrylic filaments.

  • PDF

A Statistical Study on the Warmth Retaining Properties of Fabrics (직물의 보온성에 관한 통계학적연구)

  • Lee Kwang Bae;Lee Dong Pyo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 1985
  • In order to investigate the warmth retaining properties of fabrics some characteristics such as thickness. porosity, packing density, thermal conductivity, moisture regain and air permeability were measured and experimental results were analysed statistically to relate the warmth retaining properties with those characteristics. From the analysis, the following results were obtained. 1. When the warmth retaining properties of fabrics (Y) are dependent variable and thickness ($x_1$), porosity ($x_2$), packing density ($x_3$), thermal conductivity ($x_4$), moisture regain ($x_5$) and air permeability ($x_6$) are independent variables, the regression equation of warmth retaining properties can be represented as follows. 1) Y= 1.6005+46.817$x_1$, (R=0.9487) 2)Y=-1.4187+26.5072$x_1$+0.2055$x_2$(R=0.9704) 3) Y= -3.6908+17.4482$x_1$+0.1782$x_2$+28.3243$x_3$ (R=0.9756) 4) Y=0.9202+16.9553$x_1$+0. 1167$x_2$+30.3577$x_3$+1.8884$x_4$ (R=0.9792) 5) Y=0.9353+17.2266$x_1$+0.1177$x_2$+28.9821$x_3$-1.8302$x_4$+0.0151$x_5$ (R=0.9792) 6) Y=0.7583+17.2343$x_1$+0.1196$x_2$+28.8830$x_3$-1.8336$x_4$+0.0187$x_5$0.0004$x_5$ (R=0.9792) 2. The warmth retaining properties of fabrics are merely affected by adding thermal conductivity, moisture regain and multiple regression equation which contains thickness, porosity and packing density as variables. Therefore the multiple regression which contains thickness, porosity and packing density as variables Y=-3.6908+17.4482$x_1$+0.1782$x_2$+28.3243$x_3$ is highly practical.

  • PDF

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.

A Study on Flexural Behaviors of Sandwich Composites with Facesheets of Unequal Thickness (면재 두께가 다른 샌드위치 복합재의 굽힘 거동 연구)

  • Shin, Kwang-Bok;Lee, Jae-Youl;Ryu, Bong-Jo;Lee, Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.201-210
    • /
    • 2007
  • Sandwich composites made of glass fabric epoxy facesheets with aluminum honeycomb core or balsa core is considered for the structural design of bodyshell of a Korean Low Floor Bus. Initially, in order to select the optimal facesheet and core materials in design stage, the flexural response of a sandwich composite is a critical importance. In this study, theoretical formula which could easily and quickly evaluate and obtain the flexural responses such as deflection and flexural stiffness of a sandwich composite subjected to external load was established. This theory could calculate the flexural responses of sandwich composites with narrow as well as wide width and with facesheets of unequal thickness, and also distinguish between the bending and shear effects of deflection. Finite element analysis using ANSYS V10.0 was used to offer the best elements for real sandwich composites, and flexural test according to ASTM C393 was conducted to compare with the results of theoretical formula and finite element analysis. The results show that the flexural responses of sandwich composites using proposed theoretical formula is in good agreement with those of experiment and finite element method.

The Effect of the Characteristics of Fabrics and Subjective Sensory Images on the Off-line and On-line Preferences of Women's Suit Fabrics

  • Kim, Hee-Sook;Na, Mi-Hee
    • International Journal of Human Ecology
    • /
    • v.13 no.1
    • /
    • pp.105-115
    • /
    • 2012
  • This research investigated the influences of structural characteristics such as fabrics, mechanical properties, and subjective sensory images on the off-line and on-line preferences to women's spring/summer suits fabrics to extract the most effective factor towards preference as well as analyze the preferential off-line and on-line differences to predict the exact texture image on-line. Objective evaluations were done for the measurement of the mechanical properties of fabrics using Kawabata's Evaluation System and subjective evaluations were done with 109 female subjects who value the off-line and on-line sensory image of suit fabrics. For statistical analysis, factor analysis, cluster analysis, t-test, ANOVA, and regression were used. The results were as follows. The preference scores on-line were generally higher than those off-line. For the structural characteristics of fabrics, differences of thickness were observed according to preference clusters, and the preference increased as thickness was lowered off-line and on-line. For mechanical properties, WC influenced off-line and on-line preferences. Fabrics with low compression energy were preferred; however, the effect of SMD was observed off-line only. In subjective sensory images, the 'smoothness' image influenced off-line and on-line preferences the most. All sensory images influenced the off-line preferences; however, the effects of 'flexibility' and 'weight' were not shown on-line.

Mechanical Properties of Rayon Fabrics dyed with Persimmon Juice (감즙 염색에 의한 레이온 직물의 역학적 특성)

  • Bae, Jung-Sook
    • Fashion & Textile Research Journal
    • /
    • v.16 no.5
    • /
    • pp.791-799
    • /
    • 2014
  • For development of dyeability, the rayon fabrics were dyed repeatedly with persimmon juice by padding mangle. The merit of padding-based dyeing was easier color reproduction over traditional hand dyeing where various colors and color fastness to light and laundering are hard to obtain. We evaluated the mechanical properties and hand value by Kawabata Evaluation system for dyed rayon fabrics. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity load-extension curve and tensile energy per unit length of the rayon fabrics were increased, but the tensile resilience of fabrics were decreased. The value of shear stiffness and shear hysteresis were increased. Also compression resilience and linearity of compression thickness were increased. The rayon fabrics dyed with persimmon juice had shown the thickness and weight increase as the number of padding increase. As repeating times of dyeing with persimmon juice were increased, among the 6 hand values, the item of koshi(stiffness) and Hari(anti-drape stiffness), fukurami(fullness and softness) were increased. while Shinayakasa (flexibility with soft feeling) and Shari(crispness) were greately decreased. The amount of coated persimmon juice on the surface of the fabric was gradually increased as the padding times of dyeing.