• Title/Summary/Keyword: fabric sound parameters

Search Result 14, Processing Time 0.023 seconds

RELATIONSHIP BETWEEN FABRIC SOUND PARAMETERS AND SUBJECTIVE SENSATION

  • Yi, Eunjou;Cho, Gilsoo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to investigate the relationship between fabric sound parameters and subjective sensation, each sound from 60 fabrics was recorded and analyzed by Fast Fourier transform. Level pressure of total sound (LPT), three coefficients (ARC, ARF, ARE) of auto regressive models, loudness (Z), and sharpness (Z) by Zwickers model were estimated as sound parameters. For subjective evaluation, seven sensation (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) was rated by both semantic differential scale (SDS) and free modulus magnitude estimation (FMME). As the results, the ARC values were positively proportional to both LPT and loudness (Z) values. In both of SDS and FMME, softness, clearness, and pleasantness were negatively correlated with loudness, sharpness, roughness, and highness. In regression models, softness and clearness by FMME were negatively affected by LPT뭉 ARC, while loudness, sharpness, roughness, and highness were positively expected. Regression models for pleasantness showed low values for R2.

  • PDF

Effect of Fabric Sound and Touch on Human Subjective Sensation

  • Cho, Gilsoo;Casali, John G.;Yi, Eunjou
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.196-202
    • /
    • 2001
  • In order to investigate the relationship between subjective sensation for fabric sound and touch and the objective measurements, eight different apparel fabrics were selected as specimens. Sound parameters of fabrics including level pressure of total sound (LPT), level range (ΔL), and frequency differences (Δf) and mechanical properties by Kawabata Evaluation System (KES) were obtained. For subjective evaluation, seven aspects of the sound (softness, loudness, pleasantness, sharpness, clearness, roughness, and highness) and eight of the tough (hardness, smoothness, fineness, coolness, pliability, crispness, heaviness, and thickness) were rated using semantic differential scale. Polyester ultrasuede was evaluated to sound softer and more pleasant while polyester taffeta to sound louder and rougher than any other fabrics. Wool fabric such as worsted and woolen showed similar sensation for sound but differed in some touch sensation in that woolen was coarseast, heaviest, and thickest in touch. In the prediction model for sound sensation, LPT affected positively subjective roughness and highness as well as loudness, while ΔL was found as a parameter related positively with softness and pleasantness. Touch sensation was explained by some of mechanical properties such as surface, compressional, shear, and bending properties implying that a touch sensation could be expressed by a variety of properties.

  • PDF

Development of Rustling Sound Generator Using Reciprocating Motion and Evaluation of Its Fabric Sound (왕복운동에 의한 직물마찰음발생장치의 개발 및 이를 이용한 직물소리 평가)

  • Kim Chun-Jeong;Cho Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • In order to investigate the sensation of the fabric sound simulating the real wear-condition, the fabric sound simulator using reciprocating friction was developed. Fabric sounds from 5 specimen were generated by the fabric sound simulator and recorded using high performance microphone. Physical sound parameters of fabrics including level pressure of total sound (LPT), level range (${\Delta}L$), and frequency differences (${\Delta}f$) were calculated. For psychological evaluation, seven adjectives for sound (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) were used as the semantic differential scale. Fabric sounds by reciprocating friction of nylon taffeta and polyester leno had the highest value of LPT and evaluated as loud, sharp, rough, and unpleasant while polyester ultra suede and silk crepe de chine haying the lower LPT and ${\Delta}f$ were perceived as soft and quite. Comparing with fabric sound by one-way friction, fabric sound by reciprocation friction was perceived as more sharp, loud, and rough. LPT was also the most important factor affecting the sensation of the fabric sound by reciprocating friction.

  • PDF

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.

Physiological Signal Analyses of Frictional Sound by Structural Parameters of Warp Knitted Fabrics

  • Cho Gilsoo;Kim Chunjeong;Cho Jayoung;Ha Jiyoung
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • The purpose of this study is to offer acoustical database of warp knitted fabrics by investigating frictional sound properties and physiological responses according to structural parameters such as construction, lap form, and direction of mutual guide bar movement. Fabric sounds of seven warp knitted fabrics are recorded, and Zwicker's psychoacoustic param­eters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) - are calculated. Also, physiological responses evoked by frictional sounds of warp knitted fabrics are measured such as electroencephalogram (EEG), the ratio of high fre­quency to low frequency (HF/LF), respiration rate (RESP), skin conductance level (SCL), and photoplethysmograph (PPG). In case of constructions, frictional sound of sharkskin having higher loudness(Z) and fluctuation strength(Z) increases RESP. By lap form, open lap has louder and larger fluctuating sound than closed lap, but there aren't significant difference of physi­ological responses between open lap and closed lap. In direction of mutual guide bar movement, parallel direction evokes bigger changes of beta wave than counter direction because of its loud, rough, and fluctuating sound. Fluctuation strength(Z) and roughness(Z) are defined as important factors for predicting physiological responses in construction and mutual guide bar movement, respectively.

Psychophysiological Responses to the Sound of fabric Friction (직물 마찰음에 대한 심리생리적 반응)

  • 조자영;이은주;손진훈;조길수
    • Science of Emotion and Sensibility
    • /
    • v.4 no.2
    • /
    • pp.79-88
    • /
    • 2001
  • The objectives of this study were to investigate the relationship of sound parameters with subjective sensation and physiological responses, and to figure out the interrelationship between the subjective sensation and physiological responses. Sound parameters calculated were LPT, ΔL, Δf, loudness[Z], and sharpness[Z]. Subjective sensation was evaluated in 7 aspects(soft-hard, loud-quiet, pleasant-unpleasant, sharp-dull, clear-obscure, rough-smooth, high-low) by thirty participants. We acquired physiological responses when each fabric sound was presented to 10 participants. Physiological signals obtained in this study were electroencephalogram(EEG), pulse volume(PV), skin conductance level(SCL), and LF/HF of heart rate variability. The larger the values of loudness[Z] and LPT, the louder and the rougher the subjective sensation of the perceived fabric sound. Also, the larger the values of loudness[Z] and LPT, the harder, the duller, and the less pleasant. As LPT increased, PV decreased. Loudness[Z] increased in proportion to SCL and so did sharpness[Z] to LF/HF. As the sound perceived to be quieter and clearer, the relative power of slow alpha rose. As the sound perceived to be more pleasant and smoother, PV rose.

  • PDF

Cross-Cultural Comparison of Sound Sensation and Its Prediction Models for Korean Traditional Silk Fabrics

  • Yi, Eun-Jou
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.269-276
    • /
    • 2005
  • In this study, cross-cultural comparison of sound sensation for Korean traditional silk fabrics between Korea and America was performed and prediction models for sound sensation by objective measurements including sound parameters such as level pressure of total sound (LPT), Zwicker's psychoacoustic characteristics, and mechanical properties by Kawabata Evaluation System were established for each nation to explore the objective parameters explaining sound sensation of the Korean traditional silk. As results, Koreans felt the silk fabric sounds soft and smooth while Americans were revealed as perceiving them hard and rough. Both Koreans and Americans were pleasant with sounds of Gongdan and Newttong and especially Newttong was preferred more by Americans in terms of sound sensation. In prediction models, some of subjective sensation were found as being related mainly with mechanical properties of traditional silk fabrics such as surface and compressional characteristics.

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF

Sound Characteristics and Mechanical Properties of Taekwondo Uniform Fabrics (태권도 도복 직물의 소리 특성과 역학적 성질)

  • Jin, Eun-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.486-491
    • /
    • 2012
  • This study examined the sound characteristics of Taekwondo uniform fabrics to investigate the relationship between the sound parameters and the mechanical properties of the fabric as well as to provide the conditions to maximize the frictional sound of the uniform. Frictional sounds of 6 fabrics for Taekwondo uniforms were generated by the Simulator for Frictional Sound of Fabrics. The frictional speeds were controlled at low(0.62 m/s), at mid(1.21 m/s) and at high(2.25 m/s) speed, respectively. The frictional sounds were recorded using a Data Recorder and Sound Quality System subsequently, the physical sound properties such as SPL(Sound Pressure Level) and Zwicker's psychoacoustic parameters were calculated. Mechanical properties of specimens were measured by KES-FB. The SPL, Loudness(Z) values increased while Sharpness(Z) value decreased. In the physical sound parameter, specimen E had the highest SPL value at low speed and specimen B at high speed. In case of Zwicker's psychoacoustic parameters, the commercially available Taekwondo uniform fabrics(E, F) showed higher values of Loudness(Z), Sharpness(Z), and Roughness(Z), that indicates they can produce louder, shaper and rougher sounds than other fabrics for Taekwondo uniforms. The decisive factors that affected frictional sounds for Taekwondo uniforms were W(weight) as well as EM(elongation at maximum load) at low speed and WC(compressional energy) at high speed.

Development of Insulation Sheet Materials and Their Sound Characterization

  • Ni, Qing-Qing;Lu, Enjie;Kurahashi, Naoya;Kurashiki, Ken;Kimura, Teruo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.25-40
    • /
    • 2008
  • The research and development in soundproof materials for preventing noise have attracted great attention due to their social impact. Noise insulation materials are especially important in the field of soundproofing. Since the insulation ability of most materials follows a mass rule, the heavy weight materials like concrete, lead and steel board are mainly used in the current noise insulation materials. To overcome some weak points in these materials, fiber reinforced composite materials with lightweight and other high performance characteristics are now being used. In this paper, innovative insulation sheet materials with carbon and/or glass fabrics and nano-silica hybrid PU resin are developed. The parameters related to sound performance, such as materials and fabric texture in base fabric, hybrid method of resin, size of silica particle and so on, are investigated. At the same time, the wave analysis code (PZFlex) is used to simulate some of experimental results. As a result, it is found that both bundle density and fabric texture in the base fabrics play an important role on the soundproof performance. Compared with the effect of base fabrics, the transmission loss in sheet materials increased more than 10 dB even though the thickness of the sample was only about 0.7 mm. The results show different values of transmission loss factor when the diameters of silica particles in coating materials changed. It is understood that the effect of the soundproof performance is different due to the change of hybrid method and the size of silica particles. Fillers occupying appropriate positions and with optimum size may achieve a better effect in soundproof performance. The effect of the particle content on the soundproof performance is confirmed, but there is a limit for the addition of the fillers. The optimization of silica content for the improvement of the sound insulation effect is important. It is observed that nano-particles will have better effect on the high soundproof performance. The sound insulation effect has been understood through a comparison between the experimental and analytical results. It is confirmed that the time-domain finite wave analysis (PZFlex) is effective for the prediction and design of soundproof performance materials. Both experimental and analytical results indicate that the developed materials have advantages in lightweight, flexibility, other mechanical properties and excellent soundproof performance.