• Title/Summary/Keyword: extrusion test

Search Result 206, Processing Time 0.022 seconds

Different Developmental Competence of Porcine Oocytes Selected by Brilliant Cresyl Blue Staining and Polar Body Extrusion (Brilliant Cresyl Blue 염색방법과 극체 방출 여부에 따른 돼지 체외수정용 난포란 선별 방법이 배발달에 미치는 영향)

  • Kim, Yeon-Soo;Kim, Cheol-Wook;Kim, In-Cheol;Kwack, Dae-O;Chung, Ki-Hwa
    • Reproductive and Developmental Biology
    • /
    • v.33 no.1
    • /
    • pp.29-33
    • /
    • 2009
  • The brilliant cresyl blue (BCB) has been used to select the developmental competent oocytes in pigs, goats and cows. Growing oocytes have a higher level of active glucose-6-phosphate dehydrogenase(G6PDH) compare to mature oocytes and are rarely stained compared to mature oocytes, because G6PDH converts BCB to colorless. First polar body extrusion regard as a guideline of meoisis completion. Selection of polar body extrude oocyte is more developmental competent to blastocyst than unselected. This study was conducted to compare the BCB test to the polar body extrusion on selection of developmental competent porcine oocytes for the production of blastocyst. Cumulus-Oocytes complex were exposed to 26uM BCB stain diluted in NCSU-23 for 90 min. There was no significant difference embryo development to blastocysts between BCB treated and not treated($19.58{\pm}1.99$ vs $18.75{\pm}2.27%$), which means there was no detrimental effect of BCB exposure to oocytes. Normal fertilization is not differed among treatment groups from 70.0 to 78.4% development to blastocyst, beside polyspermy did not. To compare two different selection methods, BCB test and polar body extrusion, evaluate the developmental competent of IVP embryos. BCB+PB+(blue stained and polar body extruded, $20.71{\pm}0.45%$) and BCB-PB+(colorless and polar body extruded, $20.04{\pm}l.29%$) groups are significantly (p<0.05) higher developed than those of BCB+PB-(blue stained and no polar body, $13.24{\pm}0.73%$) and BCB-PB-(colorless and no poladbody, $7.25{\pm}0.77%$). These results showed that selection of polar body extruded oocytes method is more efficient than that of BCB test.

Influence of Hot-Extrusion on Mechanical Properties of AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금의 기계적 특성에 미치는 열간압출의 영향)

  • Kim Yong-Gil;Choi Hak-Kyu;Kang Min-Cheol;Jeong Hae-Yong;Bae Cha-Hurn
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The microstructural changes by hot extrusion of AZ31B magnesium alloy were observed, and the relation to the tensile property was examined. The tensile properties as oriented longitudinal(L), half transverse(HT) and long transverse(LT) to the extrusion direction were investigated at $20^{\circ}C,\;100^{\circ}C,\;200^{\circ}C,\;300^{\circ}C\;and\;400^{\circ}C$, respectively. As the results, many recrystallized small grains distributed uniformly in large banded microstructures formed along the extrusion direction. The grain size of as-extruded specimen was around $30\~150\;{\mu}m$. As increasing the test temperature the tensile and yield strength with respect to the angle between the axis of the tensile and the longitudinal direction in extrusion was decreased, but their elongation were increased and their deviation between L and LT specimens have disappeared from $300^{\circ}C$. This mechanical anisotropy was reduced at elevated temperatures and almost disappeared at $400^{\circ}C$. It was considered that the homogenization was occured by the recrystallization and the change of slip system was occurred during tensile test process in elevated temperatures.

Analysis of Microstructures and Mechanical Properties of Billet and Extrudate according to Heat Treatment for the Extrusion of 7075 alloy (7075 합금의 압출에서 원소재 빌렛과 압출재의 열처리에 따른 미세조직 및 기계적 특성 분석)

  • Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.5
    • /
    • pp.232-238
    • /
    • 2020
  • Heating experiments using the 7075 aluminum alloy in the state of billet and extrudate have been performed to investigate the pertinent ranges of working temperatures and holding times for the application to the various automobile parts. The 7075 specimens from raw billet of 152 mm in diameter and 400 mm in length prior to extrusion were used for heating with a holding time of 10 minutes at temperatures between 380℃ and 550℃. Then, an extrusion process using the billet has been fulfilled at 380℃ with extrusion speed of 0.8 mm/min to get an plate-type extrudate of 75 mm in width and 4.2 mm in thickness. The samples from the extrudate were subjected to heating experiments at temperatures between 380℃ and 440℃ with holding times such as 10 min, 30 min, 60 min and 120 min at each heating temperature. The microstructures were investigated on the optical and EBSD micrographs. The hardness measurement and the tensile test have been performed to investigate the effect of the heat treatment on the mechanical property. The results showed for the 7075 extrusion process that the safe heating of billet can be performed below 450℃ and the extrusion can be done safely up to 400℃.

Analysis and Design of a Forming Porcess for Combined Extrusion with Aluminum AIIoy 7075 (알루미늄 7075 복합압출재에 대한 공정해석 및 설계)

  • 김진복;변상규
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.446-455
    • /
    • 1997
  • A Combined extrusion operation consists of forward and backward extrusion forming and it is possible to make the process be simple by employing it. But the metal flow pattern induced by the operation is hard to analyze accurately because the flows are non-steady, which have at least two directions dependent upon each other. So engineers in the industrial factories had conducted the two extrusion operations separately. A new process was designed by the industrial expert for forming of an alu-minum preform using the combined extrusion operation. In this study, experiments and finite element analysis was carried out to determine the process parameters. Through the preliminary experiment, it was shown that warm forming condition was more desirable than cold or hot ones. And optimal shape of initial billet could be also determined. From the compatibility test, bonde-lube was chosen as the optimal lubricant and 20$0^{\circ}C$ as the material temperature by the inspection of micro-structure. The operation was simulated by the rigid-plastic finite element method to examine the metal flow. Disap-pearing of dead metal zone was observed as the punch fell down and desirable shape was obtained from the one operation. As a result of this study, 7 operations could be reduced and 225% of material saved.

  • PDF

The Properties of Flexural Strength and Density of Extrusion Molding Concrete Panel Using Sepiolite (세피올라이트를 이용한 압출성형 콘크리트 패널의 휨강도 및 밀도 특성)

  • Jung, Eun-Hye;Kang, Cheol;Kim, Jae-Won;Lee, Jung-Koo;Choi, Hun-Gug;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.49-52
    • /
    • 2006
  • Extrusion concrete panel is made by extrusion of high viscosity paste. The high viscosity paste is made by mix of cement, silica, reinforced fiber and thickening agent in the dry mixer and wet mixer subsequently, extrusion in the extruder, and curing in the normal steam curer and high pressure steam curer subsequently. To increase a flexural strength of the panel, it is used inorganic fiber as like asbestos. But it was known that the asbestos was harmful to human being lately, in the domestic area it is restricted usage in the construction materials. So, it is demanded the alternative material for asbestos in the extrusion concrete panel. This study is to investigate that the sepiolite is possible to be the alternative of asbestos. The 3 types of sepiolite is applied to the extrusion concrete panel. To investigate the properties of the panel with sepiolite, it is compared the control with asbestos in the flexural strength, the specific density and the spot compressive strength. From the test results, it was found that the panel with sepiolite B is higher than the control with asbestos in the flexural strength and in the density.

  • PDF

Prediction of Welding Pressure in the Non Steady State Porthole Die Extrusion of Al7003 Tubes

  • Jo, Hyung-Ho;Lee, Jung-Min;Lee, Seon-Bong;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.36-41
    • /
    • 2003
  • This paper describes a numerical analysis of a non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. In order to better assist the design of die and to obtain improvement of productivity, non-steady state 3D FE simulation of porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products under various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.

Development of Construction and Painting Technology for the Aluminum Carbody of Rolling stock (알루미늄 철도차량 차체 제작 및 도장 기술 개발)

  • 서승일;김진태;박일철;이동헌;신돈수
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 1999
  • Based on the development of designed technology for aluminum carbody. the prototype aluminum carbody has been constructed. All extrusion profiles required for the carbody has been produced and their quality has also been proven. For sound construction. welding technology to join aluminum extrusion profiles has been developed and jigs for precise assembly of blocks have been made. The aluminum carbody for urban subway train has been completed with the required chamber being set and the welding deformations being constrained by jigs. The safety of the carbody structure has also been proven by the static load test. And also, painting technology has been developed and the surface of the carbody has been pre-treated and painted. The developed technology to construct the aluminum carbody can be used in mass production of aluminum cars ordered by domestic and foreign customers.

  • PDF

A study on the forming process and formability improvement of clutch gear for vehicle transmission (자동차 트랜스미션용 클러치 기어의 성형 공법 및 성형성 향상에 관한 연구)

  • Lee K. O.;Kang S. S.;Kim J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.184-187
    • /
    • 2005
  • Forging process is one of the forming process and is used widely in automobile parts and manufacture industry. Especially the gears like spur gear, helical gear, bevel gear were produced by machine tool, but recently they have been manufactured by forging process. The goal of this study is to study forming process with data obtained by comparison between forward extrusion and upsetting simulation results and formability improvement by various heat treatment conditions. By analysis data of 3D FEM by upsetting and forward extrusion forming, the forming process of clutch gear develops using data based on 3D FEM analysis. Through tensile test using specimens by various heat treatment conditions, the optimal heat treatment condition is obtained by comparison the results of tensile test.

  • PDF

Finite Element Analysis of Porthole Extrusion Process for Al Suspension Arm (서스펜션 암의 포트홀 다이 압출공정 유한요소 해석)

  • Joe, Y.J.;Lee, S.K.;Kim, B.M.;Oh, K.H.;Park, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.247-250
    • /
    • 2006
  • The growing demand for more fuel-efficient vehicles to reduce energy consumption and air pollution is a challenge for the automotive industry. The characteristic properties of aluminum, high strengrth stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight resuction demand within the automotive industry. In this paper, A series of compression test was carried out to find the flow stress of A6082 at 300, 400 and $500^{\circ}C$, then we tried to estimate weldability, extrusion load and effective stress of die in the aluminum extrusion process through the 3D FE simulation at non-steady state for aluminum automotive parts.

  • PDF

Effect of Processing Condition on the Hot Extrusion of Al-Zn-Mg-Sc Alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Kim, Nam-Yong;Kim, Jin-Ho;Yeom, Jong-Taek;Lee, Dong-Geun;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.143-147
    • /
    • 2006
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.