• Title/Summary/Keyword: extrusion conditions

Search Result 248, Processing Time 0.023 seconds

A Study on Optimum Computation of Extruding Force for the Extrusion (압출공정에 있어서 최적압출력 산정에 관한 연구)

  • Oh P. K.;Yu S. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.7-14
    • /
    • 2002
  • To carry out the analysis of the extruding products, it is necessary to get the optimum computation of extruding force for the extrusion. The existing numerical models of the extrusion may be large different from the actual conditions. In this study, accurate theoretical analysis of the extrusion forming and optimum extruding force should be subjected. It is to develop the numerical models which describes the optimum extrusion force. Therefore, the results should improve accuracy of extrusion forming and cause the energy saving for the extrusion.

  • PDF

The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies (원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출)

  • Yun, Yeo-Gwon;Kim, Hui-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

Development of A Process Map for Bundle Extrusion of Cu- Ti Bimetal Wires (구리-타이타늄 이중미세선재 번들압출의 공정지도 개발)

  • Kim J. S.;Lee Y. S.;Yoon S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.393-397
    • /
    • 2005
  • A process map has been developed, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion fur pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

  • PDF

Kinetic Modiling of Cyclodextrin forming Reactionin a Heterogeneous Enzyme Reaction System using Swollen Extrusion Starch (팽윤 Extrusion 전분을 기질로 한 불균일상 효소 반응계에서 Cyclodextrin 생성반응의 수치적 해석)

  • 조명진;박동찬;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.425-431
    • /
    • 1995
  • A kinetic model of the cyclodextrin formation in a heterogeneous enzyme reaction system using swollen extrusion starch as substrate was derived emphasing the structural features of extrusion starch. The degree of gelatinization, the ratio of accessible and inaccessible portion of extrusion starch, adsorption of CGTase on swollen starch, the structural transformation during reaction, and product inhibition caused by produced CDs were considered in deriving kinetic model. Various kinetic constants were also evaluated. The derived kinetic equation was numerically simulated, which result showed that the derived kinetic equations can be used to predict the experimental data reasonably well under the various experimental conditions. Kinetic model can be utilized for the optimization of enzyme reactor and the process development for CD production from swollen extrusion starch.

  • PDF

Effects of Extrusion Conditions of Corn and Soybean Meal on the Physico-Chemical Properties, Ileal Digestibility and Growth of Weaned Pigs

  • Chae, B.J.;Han, In K.;Kim, J.H.;Yang, C.J.;Chung, Y.K.;Rhee, Y.C.;Ohh, S.J.;Ryu, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1997
  • Two experiments were conducted to evaluate the effects of different extrusion conditions of corn and soybean meal on physico-chemical properties, ileal digestibility of amino acid and growth performance in weaned pigs. In Expt. 1, to compare physico-chemical properties and ileal digestibility of extruded corn and soybean meal, ground corn (2 mm screen) and soybean meal were separately extruded in four different conditions: (1) no preconditioning, low water supply (3.0 l/min) (NCLW), (2) no preconditioning, high water supply (7.0 l/min) (NCHW). (3) preconditioning (steam 3.0 l/min) with low water supply (3.0 l/min) (CLW), and (4) preconditioning (steam 3.0 l/min) plus high water supply (7.0 l/min) (CHW). Twenty-five cannulated pigs ($L{\times}Y{\times}D$, 7.62 kg BW for soybean meal, 8.80 kg BW for corn) were employed to determine nutrients digestibility of the extruded feedstuffs. In Expt. 2, a total of 90 pogs ($L{\times}Y{\times}D$, 9.18 kg BW) were used for a 28 d feeding trial to compare growth performance of pigs as affected by different extrusion conditions. Before mixing, corn and soybean meal were blended and extruded by the same conditions as described in Expt. 1. corn extruded with NCLW showed the highest (p < 0.05) degree of gelatinization (DG), compared to the lowest values observed for NCHW. Extrusion of corn with preconditioning (CLW and CHW) increased (p < 0.05) the DG as compared to the extrusion condition of NCHW. Extruded SBM with NCLW showed the lowest (p < 0.05) degree of texturization among treatments. The ileal digestibility of GE in SBM was higher with NCHW and CHW as compared to NCLW. The ileal digestibility of CP was lower in extruded corn, but was higher in extruded SBM, compared to untreated sample. Lysine digestibility of extruded corn (except corn with NCHW) was in general significantly improved. Extrusion of SBM resulted in no improvements in ileal digestibility of amino acids, but extruded SBM with NCLW had lower lysine digestibility compared to other treatments. In growth responses, pigs fed a diet with CLW had higher, but not significant, average daily gain (ADG) than other treatments during first 2 weeks. From d 15 to 28, pigs fed a diet with CHW had significantly less (p < 0.05) average daily feed intake (ADFI) than others except NCHW. In conclusion, the proper extrusion condition for corn and SBM in terms of ileal digestibility of amino acids and growth performance of weaning pigs seems to be the combination of preconditioning and a low water supply (3.0 l/min).

The Effect of Extrusion Temperature and Die Angle on Mechanical Properties of $SiC_p$/2024Al Composites Fabricated by Powder Extrusion Method (분말압출법으로 제조된 $SiC_p$/2024Al 복합재료에 있어서 압출온도와 다이각이 기계적 성질에 미치는 영향)

  • 성병진
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • Effects of the extrusion temperature and die angle on the tensile properties of SiCIyAl composites in powder extrusion have been investigated. SiCP/Al composites were extruded at various extrusion temperatures (450, 500, $550^{\circ}C$) under the extrusion ratio of 25 : 1. The ram speed was maintained at 13 cm/min for all the extrusion conditions. The surface of the extruded rod appeared to be smooth without tearing at 450 and 50$0^{\circ}C$, whereas it was very rough due to tearing at $550^{\circ}C$. It was found that the tensile strength and elongation of the composites extruded at $500^{\circ}C$ are greater than those of composites extruded at $450^{\circ}C$ This is due to the easier plastic deformation of composite extruded at $500^{\circ}C$, compared with the composites extruded at $450^{\circ}C$. The effect of die angle was examined under 20=60, 120, $180^{\circ}$die angles at extrusion temperature of $500^{\circ}C$ under 25:1 extrusion ratio. The tensile strength of the composites extruded with 20=$60^{\circ}$approved to be higher than that of the composties extruded with 28 : 120 and $180^{\circ}$This is attributable to the higher extrusion pressure, which mixed composite powders could be densely consolidated at elevated temperatures, resulting from high friction force between billet and sliding surface of conical die.

  • PDF

Reheating Process of Extrusion Billet with Large Dimension (대형 압출 빌렛트의 재가열 공정)

  • 배정운;서판기;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.261-264
    • /
    • 2003
  • Semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Many advantages are associated with this forming process at the condition that the forming operation is performed under appropriate conditions. The thixoforming process, which needs a suspension of a globular, non-dendritic solid phase in the liquid phase, is characterized by three major steps. The first step is casting of billets with a microstructure suited for thixoforming. The second step is reheating of slugs cut from these billets. The third step is injection of the semi-solid slugs into a die. In this paper, the horizontal reheating machine to obtain the optimal conditions suitable for semiu-solid die casting process was used and applied to extrusion material. It is estimated the possibility of application on semi-solid die casting with extrusion material through various results.

  • PDF

A Study on the Numerical Friction Model for Extrusion (압출성형을 위한 마찰수식 모델에 관한 연구)

  • Oh P. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.14-20
    • /
    • 2005
  • To carry out perfectly the forming analysis of the extruding products, it is necessary that the friction boundary condition between dies and blanks should be worked out the accurate numerical friction models. But, the existing numerical models of the extrusion may be large different from the actual conditions. In this study, accurate analysis of the extrusion forming for the variation of pressure and velocity should be subjected. It is to develop the accuracy of the numerical friction models and potentialize to apply for the high speed forming work in the extrusion. Therefore, the results should improve the accuracy, cause the energy saving for the extrusion and finally expand the applying areas of the results.

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF