• Title/Summary/Keyword: extruded length

Search Result 94, Processing Time 0.027 seconds

The Electrical Resistivity of a SiCw/Al Alloy Composite with Temperature

  • Kim Byung-Geol;Dong Shang-Li;Park Su-Dong;Lee Hee-Woong
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.489-493
    • /
    • 2004
  • The electrical property of MMC is essentially important to some applications such as power transmission lines and cables, electronic and electrical components as well as electromagnetic shielding equipments. The behavior of electrical resistivity of $SiC_{w}/Al$ alloy composites under as-extruded and annealed conditions has been investigated within the temperature range from room temperature to $450^{\circ}C$. It can be seen that within entire temperature range, the electrical resistivity of composites was higher than that of an unreinforced matrix alloy under the same condition of either as-extrusion or annealing. The temperature dependence of both exhibited positive incline like a typical metal. The variation of electrical resistivity of an unreinforced matrix alloy with temperature from ambient temperature to $450^{\circ}C$ was nearly monotonous, while those of composites increased monotonously at low temperature and rose to a high level after about $250^{\circ}C or 275^{\circ}C$. The difference of these temperature dependences on electrical resistivity can be interpreted as qualitatively the interfaces of $SiC_{w}$ fibers and matrix, where act as nucleation sites.

MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY (차체 제작을 위한 레이저용접 마그네슘 TWB 판넬)

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

Process Design for the Tubular Hydroforming at Elevated Temperatures (온간 하이드로포밍 공정을 위한 시스템 설계)

  • Kim, B.J.;Park, K.S.;Sohn, S.M.;Lee, M.Y.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

Characteristics of Forming toad in Forward and Backward Can Extrusion Processes (전ㆍ후방 캔 압출공정의 성형하중특성)

  • Choi H. J;Ham B. S;Ok J. H;Shim J. H;Kim S. H;Hwang B. B
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.689-695
    • /
    • 2004
  • This paper is concerned with the analysis of the forming load characteristics of a forward-backward can extrusion process. The analysis in this paper is extended to the selection of press frame capacity for producing efficiently final product at low cost. The possible extrusion processes to shape a forward-backward can part with different outer diameters are categorized to investigate quantitatively the forming load, forming energy and maximum pressure exerted on the die-material interface. The categorized processes are composed of combined and/or some basic extrusion processes. After the analysis of the forming load characteristics, the frame capacity of press suitable for a selected process could be determined along with securing the load capacity and with considering productivity. In addition, it is also suggested that different load capacities be selected for different dimensions of a part such as the wall thickness in forward direction. The work in this paper could be a good reference for analysis of complex extrusion and selection of proper frame capacity of press to achieve low production cost and thus high productivity.

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

Physical Properties of Yukwa Base According to the Extrusion Processing Conditions (I): Manufacturing of Yukwa Base with Combination of Glutinous Rice Flour and Rice Flour (Extrusion 제조조건에 따른 유과바탕의 물리적 품질특성(I): 찹쌀가루와 쌀가루 배합에 따른 유과바탕의 제조)

  • Eun, Jong-Bong;Hsieh, Fu-hung;Choi, Ok-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1760-1766
    • /
    • 2009
  • Physical properties of Yukwa base extruded with glutinous rice flour, rice flour, defatted soy flour, and salt using an twin-screw extruder were investigated. The ingredients were extruded at various moisture contents (16-18%), screw speeds (300 & 400 rpm) at 43.4 kg/hr feed rate. Length and specific volume of Yukwa base increased with decreasing moisture contents. Hunter's color L* values of Yukwa base was higher whereas $a^*\;and\;b^*$ values were lower with increasing moisture content. Water absorption index of Yukwa base increased with increasing moisture contents. X-ray diffraction of Yukwa base showed B type moisture content of 16% and 17% while it showed A type moisture content of 18%. Degree of crystallinity and breaking strength of Yukwa base were the lowest in the moisture content of 16% while the lowest value for hardness was found in the moisture content of 16% and of 17% with screw speed 400 rpm for all samples. In the microstructure of cross section of Yukwa base, air cell size was larger and cell wall was thicker as moisture content increased. The sensory evaluation of the Yukwa base showed that color and flavor were not significantly different among samples, while taste, appearance, mouth feel, and overall preference were higher as moisture contents decreased.

Effects on Quality Characteristics of Extruded Meat Analog by Addition of Tuna Sawdust (참치 톱밥의 첨가가 압출성형 인조육의 품질 특성에 미치는 영향)

  • Cho, Sung Young;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.465-472
    • /
    • 2017
  • In this study, tuna sawdust was added to extruded meat analog in order to develop a meat analog with high quality. Addition of tuna sawdust has merit for utilizing a byproduct from poultry processing. Physicochemical characteristics were examined through the extrusion cooking process. The basic mixture of sample mixed with 65% deffated soy flour 25% isolated soy protein, and 10% corn starch was setup as the raw material. Three kinds of samples were made in total by addition of 15% and 30% tuna sawdust to this mixture. The extrusion process had a screw speed of 250 rpm, die temperature of $140^{\circ}C$, and moisture content of 50%. As addition of tuna sawdust increased, breaking strength and density decreased, specific length increased, and integrity and water holding capacity decreased. Likewise, nitrogen solubility index and protein digestibility decreased as addition of tuna sawdust increased. DPPH radical scavenging activity increased as addition of tuna sawdust addition, whereas it decreased as storage period increased to 30 or 60 days. The value of rancidity decreased as addition of tuna sawdust increased. However, 60 days later, radical scavenging activity increased more or less, and a significant difference was detected 150 days later. In conclusion, addition of tuna sawdust increased soft texture, and nutrition of the basic mixture sample. The process promoting functionality such as improvement of antioxidant function was confirmed through this study.

A Study on the Detoxification of Chrysotile and the use of High-density Extruded Cement Panel Reinforcement Fibers (백석면의 무해 섬유화 처리 방법과 고밀도 압출성형 패널 활용 연구)

  • Jang, Kyong-Pil;Kim, Tae-Hyoung;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.223-228
    • /
    • 2021
  • The final disposal method for asbestos building materials is to be landfilled at a designated waste landfill in accordance with the Waste Management Act. However, it is difficult to secure a domestic designated waste landfill site to landfill the entire amount of asbestos waste, which is expected to emit more than 400,000 ton/year by 2044. In this study, a detoxification treatment was performed on a ceiling tex with a density of 1.0 to 1.2g/cm3 containing 3 to 7% of chrysotile, and it was used as a reinforcing fiber for extruded panels. It was confirmed that asbestos components were detoxified through the reaction process using 30% oxalic acid and carbon dioxide, and it was recognized that these detoxifying properties were maintained even after extrusion molding. However, it was found that milling to a fiber size of less than 1mm for complete detoxification of asbestos resulted in a decrease in reinforcing performance. Therefore, in the case of using detoxified asbestos fibers in the extrusion molding process, it is considered desirable to add fibers with a length of 5mm or more to improve the reinforcing performance.

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).

Strength and Healing Performance of the Mortar using Bacterial Pellet as a Self-Healing Material (박테리아 펠렛을 자기치유 소재로 사용한 모르타르의 강도 및 치유성능)

  • Jang, Indong;Son, Dasom;Ryu, Young-ung;Park, Woojun;Yi, Chongku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.112-119
    • /
    • 2020
  • In this study, cellulose-based bacterial pellets was used for the self-healing concrete manufacturing. The pellet is composed of complex cultured bacterial spore powder, methyl cellulose, two kinds of PVA nutrients and water, and is extruded through a hydraulic press to have a shape of 2mm in diameter to 3 to 4mm in length. Cellulose pellets expand at neutral pH, release bacteria and nutrients, and do not react in a basic environment, increasing the long-term survival rate of bacteria in cement mortar. In addition, pellet self-healing performance of pellet mortar was significantly higher than that of control mortar. Cellulose-based pellets are a new type of bacterial carrier system that will help develop self-healing concrete in the future by improving and optimizing pellets.