• Title/Summary/Keyword: extruded length

Search Result 94, Processing Time 0.019 seconds

An Upper Bound Analysis for the Twisting Phenomenon of Extrusion of S shape from Round Billet (상계해법에의한 원형빌렛으로부터 S형 단며의 압출가공의 비틀림 해석)

  • 진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.130-135
    • /
    • 1997
  • A kinematically admissible velocity field is developed for the analysis of twisting of extruded products. The twisting of extruded product is caused by the linearly increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis, the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance and is increased linearly by longitudinal distance from die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product changes with the aspect ratio of product and increases with the decreases in die length and in eccentricity of gravity center of the cross-section of workpiece at die entrance from that of the cross-section at the die exit.

  • PDF

An Analysis of the Square Die Extrusion of Non-Axisymmetric Bars from Circular Billets at Final-Stage (원형 소재에서 비축대칭 봉재의 최종단계 평금형 압출 해석)

  • 김동권;배원병;김영호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.143-149
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to drtermine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of non-axisymmetric bars from circular billets. The proposed velocity field is applied to the square-die extrusion of trochoidal gear-shaped bars and rectangular-shaped bars, the profile function of a rectangular being approximated by using a Fourier series. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreements in average extruded length between theory and experiment.

  • PDF

An Upper Bound Analysis of the Final-Stage Square Die Extrusion of the Non-Axisymmetric Bars (비축대칭 형상을 가진 제품의 최종단계 평금형 압출에 관한 상계해석)

  • Kim, Dong-Kwon;Bae, Won-Byong;Kim, Young-Ho
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.390-397
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to determine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of non-axisymmetric bars from circular billets. The proposed velocity field is applied to the square-die extrusion of trochoidal gear-shaped bars and rectangular-shaped bars. The profile function of a rectangle is approximated by using a Fourier series. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreements in average extruded length between theory and experiment.

  • PDF

Development of a fixing device for slate using press dies (프레스 금형을 이용한 석재판 고정장치 개발)

  • Baek, Seung-Yub;Kim, Sun-Young
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.24-31
    • /
    • 2008
  • The productive products are required diversification of product development and advanced for competitiveness. A lot of methods to fix architecture wrapping panels and stone materials are developed in domestic area very much. In this paper, it is very important that a fixing device of slate and molds were developed to reduce the production cost and improve safety. Therefore new model was suggested to reduce manufacturing cost and structure design and FEM analysis were performed to manufacture die press dies for mass production.

  • PDF

Effects of Moisture Content on Physical Properties of Extruded Cereal Flours (수분함량에 따른 곡류 압출성형물의 물리적 특성 비교)

  • Kim, Cheol-Hyun;Jin, Tie;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.11
    • /
    • pp.1603-1610
    • /
    • 2012
  • The effects of moisture content on the physical properties of cereal extrudates were investigated. Cereal flours (rice, wheat, corn, barley, and oat) were extruded at a barrel temperature of $130^{\circ}C$, feed rate of 120 g/min, and various moisture contents (20, 22.5, 25, 27.5, and 30%). Proximate content, expansion index, specific length, bulk density, breaking strength, apparent elastic modulus, water absorption index (WAI), water solubility index (WSI), specific mechanical energy (SME) input, paste viscosity, and color values were analyzed. Expansion ratio of extruded corn flour was higher than that of other extrudates at low moisture content. Bulk density, specific length, and elastic modulus in all cereals decreased with an increase in moisture content. The WAI increased with an increase in moisture content, whereas WSI decreased. SME input of extruded corn flour was higher than those of other cereal flours at lower moisture content, whereas that of oat flour extrudate was lower than those of other cereals at higher moisture content. Lightness of extruded rice flour was lighter than those of other cereals while that of extruded barley flour was darker.

Effects of Emulsifier Additions on the Physical Properties of Extruded Psyllium (유화제 첨가에 따른 차전자피 압출성형물의 물리적 특성)

  • Lee, Jung Won;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.23 no.2
    • /
    • pp.118-124
    • /
    • 2019
  • This study aims to investigate the physical properties of extruded psyllium husk upon the addition of emulsifiers. Three different emulsifiers-glycerol monostearate (GMS), polyglycerol ester (PGE), and sugar ester (SE)-were added to the mixture of psyllium husk and rice powder before extrusion. Extrusion was performed using a twin-screw extruder at 140℃ die temperature, 200 rpm screw speed, and 16% feed moisture content. The physical properties of psyllium husk extrudates including expansion ratio, specific length, piece density, texture profile, color properties, water soluble index, and water absorption index were evaluated. It was observed that the expansion ratio was the highest while the specific length and piece density were the lowest in the control which had no emulsifiers. Texture profile analysis showed that the apparent elastic modulus and breaking strength were highest in the extrudate with a PGE of 0.1%. The adhesiveness was found to be lowest in the extrudates with an SE of 0.1% and GMS of 0.5%. Lightness value was highest in the extrudate with a PGE of 0.1%. Color difference, water soluble index, and water absorption index were highest in the control. The results reveal that some physical properties of extruded psyllium husk were improved with the addition of emulsifiers. This finding provides useful information for the development of psyllium snacks with good physical characteristics.

A Study on the Friction Stir Welding Properties of A6005 Extruded Aluminum Panels (알루미늄 A6005 압출 패널의 마찰교반용접 특성 연구)

  • Park, Young-Bin;Koo, Jeong-Seo;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.512-517
    • /
    • 2009
  • Extruded aluminium panels have been widely used for railway vehicle structures because -of their light specific weight and other merits. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used due to its lots of advantage. In this study aluminium A6005 which is used for car body structures was chosen. The influences of main parameters on mechanical properties such as: pin (tool) rotating speed, pin transition speed, shoulder, diameter, pin length and tilting angle were examined. Optical microscope and scanning electron microscope (SEM) observation, micro hardness tests, and tensile tests were carried out.

Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe (중공축 소재를 이용한 전후방 복합압출의 성형 특성)

  • Kim S. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

A theoretical mapping model for bridge deformation and rail geometric irregularity considering interlayer nonlinear stiffness

  • Leixin, Nie;Lizhong, Jiang;Yulin, Feng;Wangbao, Zhou;Xiang, Xiao
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.93-105
    • /
    • 2023
  • This paper examines a high-speed railway CRTS-II ballastless track-bridge system. Using the stationary potential energy theory, the mapping analytical solution between the bridge deformation and the rail vertical geometric irregularity was derived. A theoretical model (TM) considering the nonlinear stiffness of interlayer components was also proposed. By comparing with finite element model results and the measured field data, the accuracy of the TM was verified. Based on the TM, the effect of bridge deformation amplitude, girder end cantilever length, and interlayer nonlinear stiffness (fastener, cement asphalt mortar layer (CA mortar layer), extruded sheet, etc.) on the rail vertical geometric irregularity were analyzed. Results show that the rail vertical deformation extremum increases with increasing bridge deformation amplitude. The girder end cantilever length has a certain influence on the rail vertical geometric irregularity. The fastener and CA mortar layer have basically the same influence on the rail deformation amplitude. The extruded sheet and shear groove influence the rail geometric irregularity significantly, and the influence is basically the same. The influence of the shear rebar and lateral block on the rail vertical geometric irregularity could be negligible.

Effect of Processing Parameters on Direct Fabrication of Polycrystalline Silicon Wafer (다결정 실리콘 웨이퍼 직접제조에 대한 공정변수 영향)

  • Wi, Sung-Min;Lee, Jin-Seok;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.157-161
    • /
    • 2013
  • A ribbon-type polycrystalline silicon wafer was directly fabricated from liquid silicon via a novel technique for both a fast growth rate and large grain size by exploiting gas pressure. Effects of processing parameters such as moving speed of a dummy bar and the length of the solidification zone on continuous casting of the silicon wafer were investigated. Silicon melt extruded from the growth region in the case of a solidification zone with a length of 1cm due to incomplete solidification. In case of a solidification zone wieh a length of 2 cm, on the other hand, continuous casting of the wafer was impossible due to the volume expansion of silicon derived from the liquid-solid transformation in solidification zone. Consequently, the optimal length of the solidification zone was 1.5 cm for maintaining the position of the solid-liquid interface in the solidification zone. The silicon wafer could be continuously casted when the moving speed of the dummy bar was 6 cm/min, but liquid silicon extruded from the growth region without solidification when the moving speed of the dummy bar was ${\geq}$ 9 cm/min. This was due to a shift of the position of the solid-liquid interface from the solidification zone to the moving area. The present study reports experimental findings on a new direct growth system for obtaining silicon wafers with both high quality and productivity, as a candidate for an alternate route for the fabrication of ribbon-type silicon wafers.