• Title/Summary/Keyword: extrudability

Search Result 29, Processing Time 0.024 seconds

Metal Flow and Interface Bonding of Copper Clad Aluminum Rods by the Direct Extrusion (직접압출에 의한 Cu-Al 층상 복합재료 봉의 금속유동과 계면접합)

  • Yun, Yeo-Kwon;Kim, Hee-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.166-173
    • /
    • 2001
  • Composite materials consists of two or more different material layers. The usefulness of clad metal rods forms the possibilities of combination of properties of different metals. Copper clad aluminum composite materials are being used for economic and structural purpose. In this study, composite billet consists of commercially pure copper and aluminum(A6061) and experimental conditions consist of the combinations of clad thickness, extrusion ratio, and semi-cone angle of die. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios, semi-cone angles of die, and composition rate of Cu:Al.

  • PDF

The Effect of Process Parameter in Direct Extrusion of Copper Clad Aluminum Composite Materials (Cu-Al 층상 복합재료의 직접압출시 공정변수의 영향)

  • 윤여권;김희남;김용수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.28-34
    • /
    • 2000
  • Copper clad aluminum composite materials are being used for economic and structural purposes, The development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important. This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. There are several parameters that have an influence on determining a sound clad extrusion. These variables are extrusion temperature, extrusion ratio, semi-cone angle of die, extrusion force, extrusion velocity, friction of between the container and billet, percentage of copper used and ratio of flow stress of copper to aluminum. In order to investigate the influence of extrusion temperature, extrusion ratio, semi-cone angle of die on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with these variation.

  • PDF

Variations of Metal Flow State and Hardness on the Direct Extrusion of Copper Clad Aluminum Rods (Cu-Al 층상 복합재료 직접압출시 금속의 유동상태와 경도 변화)

  • Kang, W.Y.;Yoon, Y.K.;Park, S.H.;Kim, H.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.759-765
    • /
    • 2000
  • A composite material consists of two or more different material layers. Copper clad aluminum composite materials are being used for economic and structural reasons. This study is concerned with experimental investigation in the direct extrusion of copper clad aluminum rods through conical dies. The suggestion are given for the proper extrudability of copper clad aluminum rods via hot direct extrusion. This paper presents the variation of flow state and hardness at a variable of extrusion ratio and semi-angle of die. By measuring after and before extrusion radius ratio of Cu sleeve and Al core, proportional flow state has been considered. And also by measuring hardness, through extrusion way, a variation of hardness has been considered.

  • PDF

Development of Seamless Tube for 7075 Al Wrought Alloys by Direct Thixoextrusion process utilizing Porthole Die (반용융 직접 압출에 의한 Porthole Die 활용 A7075 심리스 튜브 개발)

  • Jang, D.I.;Kim, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.227-230
    • /
    • 2009
  • The aim of this study was to improve extrudability limit, eliminate welding line and obtain optimum thixoextrusion conditions for manufacturing tubes of 7075 Al wrought alloy. By thixoextrusion, it was possible to improve deformability, control isotropy with extrusion direction, eliminate welding line (seamless) and save cost due to low energy consumption compared with conventional extrusion processes. The welded part was not observed at the welding line area. The grains of thixoextruded tube were homogeneously distributed and equiaxed grains were observed. Therefore, thixoextrusion is the most effective variable for the control of the magnitude of the welding line.

  • PDF

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반응고 Al-Zn-Mg 합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Kim, Jeoung-Han;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.405-408
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy..

  • PDF

Characteristics on the Hot Extrusion of Semi-Solid Al-Zn-Mg Alloy (반용융 Al-Zn-Mg합금의 고온 압출 시 특성 평가)

  • Cho, Kuk-Rae;Yeom, Jong-Taek;Shim, Sung-Yong;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.391-395
    • /
    • 2007
  • Semi-solid Al-Zn-Mg alloys were produced by using a cooling plate method in order to investigate the extrudability. Al melt was poured on cooling plate which was adjusted at $60^{\circ}$ with respect to the horizontal plane, and the melt was cooled by water circulation underneath. Obtained Semi-solid feedstock has globular microstructure but also contains considerable amount of gas pore. Due to the pore, tensile elongation of the semi-solid feedstock was very low and it doesn't show yield point phenomenon. Isothermal hot extrusion was carried out using at $400^{\circ}C$ with a ram speed of 1mm/sec and an extrusion ratio of 25:1. The extruded bar show noticeably improved tensile ductility and strength because pore volume fraction decreased from 5% to 0.8% after extrusion. Mechanical properties of the semi-solid extruded bar were compared with that of commercial casting alloy.

A Study on the Compressive Properties of Thixo-Extruded 7075 Aluminum Alloy (7075 알루미늄 합금 반용융 압출재의 압축특성)

  • Kim, Dae-Hwan;Jung, Hyun-Ju;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.37 no.2
    • /
    • pp.38-44
    • /
    • 2017
  • Given that the conventional extrusion of high-strength Al alloys such as 7075 aluminum alloys is difficult due to their very low extrudability as compared to that of 6061 aluminum alloys, thixo-extrusion can be used to obtain a high-strength material easily at a lower extrusion pressure as compared to conventional extrusion. In this study, hot- and thixo-extruded 7075 aluminum alloys are prepared by a vertical forward extrusion process and their microstructures, hardness levels, and compressive properties are investigated. Hot-extruded alloy bars are assessed to obtain a microstructure elongated in the extrusion direction, whereas with thixo-extruded alloy bars, it was possible to obtain a microstructure having fine and equiaxed grains by dynamic recrystallization. The resulting isotropy and improved formability at the hot deformation temperature of the thixo-extruded alloy were attributed to the fine and equiaxed grains formed by the thixo-extrusion process.

The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies (원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출)

  • Yun, Yeo-Gwon;Kim, Hui-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

A study on equal-channel angular extrusion process conditions for improving mechanical properties of magnesium alloy (기계적 특성 향상을 위한 마그네슘 합금의 등틍로각압출 공정 조건에 관한 연구)

  • Bae, Seong-Hwan;Min, Kyung Ho
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2016
  • Although magnesium alloy has received much attention to date for its lightweight and high specific strength, their applications are impeded by the low formability which is caused by the hexagonal crystal structure at room temperature. In general, equal-channel angular extrusion(ECAE) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. ECAE process has several parameters such as angle of die, process temperature, process route and speed. During ECAE process of Mg alloy, these parameters has great influence on the extrudability and the mechanical properties of alloy. The aim of this study is to estimate the influences of process conditions on the formability of AZ31 and AZ31-CaO alloys. Mg alloys are processed through ECAE at elevated temperatures using three types of die with channel angle of $90^{\circ}$, $110^{\circ}$, $135^{\circ}$ using route $B_c$, respectively. This study discusses the feasibility of using ECAE to improve both formability and strength on magnesium alloys by comparative analyzing the mechanical properties and microstructural evolution in each condition.

Isotropy Control of 7075 Al Wrought Alloy by Thixoextrusion (반용융 압출에 의한 A7075 합금의 등방성 제어)

  • Yoon, Young-Ok;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.210-216
    • /
    • 2010
  • The aim of this study is to characterize a thixoextruded 7075 Al wrought alloy bar in terms of its isotropic behavior through the optical microscope, mechanical test and electron back scattered diffraction. It is also discussed of the extrudability improvement for 7075 Al wrought alloy by thixoextrusion, with emphasis on controlling thixoextrusion parameters. Hot extrusion shows that the maximum extrusion pressure depends on their characteristics in terms of flow stress and hot workability. In the contrary, thixoextrusion demonstrates that the maximum extrusion pressure is almost uniform regardless of the experimental parameters, such as initial ram speed, die bearing length and thixoextrusion temperature. The hot extruded microstructures become elongated to extrusion direction, while the thixoextruded microstructures are isotropic and homogeneously distributed due to the existence of liquid phase between solid grains during the process. The grain refinement due to dynamic recrystallization during thixoextrusion has been also occurred. Subsequent recrystallization would lead to the strengthening of mechanical properties, as observed in the study. The important point is that the values of tensile, yield strength and elongation of the thixoextruded bar without plastic deformation are similar to those of the hot extruded bar with severe plastic deformation.