• Title/Summary/Keyword: extreme wind speeds

Search Result 59, Processing Time 0.031 seconds

Errors in GEV analysis of wind epoch maxima from Weibull parents

  • Harris, R.I.
    • Wind and Structures
    • /
    • v.9 no.3
    • /
    • pp.179-191
    • /
    • 2006
  • Parent wind data are often acknowledged to fit a Weibull probability distribution, implying that wind epoch maxima should fall into the domain of attraction of the Gumbel (Type I) extreme value distribution. However, observations of wind epoch maxima are not fitted well by this distribution and a Generalised Extreme Value (GEV) analysis leading to a Type III fit empirically appears to be better. Thus there is an apparent paradox. The reasons why advocates of the GEV approach seem to prefer it are briefly summarised. This paper gives a detailed analysis of the errors involved when the GEV is fitted to epoch maxima of Weibull origin. It is shown that the results in terms of the shape parameter are an artefact of these errors. The errors are unavoidable with the present sample sizes. If proper significance tests are applied, then the null hypothesis of a Type I fit, as predicted by theory, will almost always be retained. The GEV leads to an unacceptable ambiguity in defining design loads. For these reasons, it is concluded that the GEV approach does not seem to be a sensible option.

An alternative method for estimation of annual extreme wind speeds

  • Hui, Yi;Yang, Qingshan;Li, Zhengnong
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.169-184
    • /
    • 2014
  • This paper presents a method of estimation of extreme wind. Assuming the extreme wind follows the Gumbel distribution, it is modeled through fitting an exponential function to the numbers of storms over different thresholds. The comparison between the estimated results with the Improved Method of Independent Storms (IMIS) shows that the proposed method gives reliable estimation of extreme wind. The proposed method also shows its advantage on the insensitiveness of estimated results to the precision of the data. The volume of extreme storms used in the estimation leads to more than 5% differences in the estimated wind speed with 50-year return period. The annual rate of independent storms is not a significant factor to the estimation.

Probability-Based Estimates of Basic Design wind Speeds in Korea (확률에 기초한 한국의 기본 설계풍속 추정)

  • 조효남;차철준;백현식
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.62-72
    • /
    • 1989
  • This study presents rational methods for probability-based estimates of basic design wind speeds in Korea and proposes a risk-based nation-wide map of design wind speeds. The paper examines the fittings of the extreme Type I mode to largest yearly non-typhoon wind data from long-term records, and to largest monthly non-typhoon wind data from short-term records. For the estimation of the extreme typhoon wins speed distribution, an indirect analytical method based on a Monte-Carlo simulation is applied to typhoon-prone regions. The basic desig wind speeds for typhoon and non-typhoon winds at the sites of concern are made to be obtained from the mixed model given as a product of the two distributions. The results of this study show that the proposed models and methods provide a practicable tool for the development of the risk-based basic design wind speed and the design wind map from short-term station records currently available in Korea.

  • PDF

A Study on the Application ratio of Directional wind speeds Characteristics by Gumbel Model Simulation Using Directional wind Patterns (풍향패턴에 따른 굼벨 모델 시뮬레이션에 의한 풍향풍속성의 적용율 평가에 관한 연구)

  • Chung, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.573-580
    • /
    • 2010
  • In this study, an assessment method that considers the effects of directional wind speeds on buildings or structures that are sensitive to wind is proposed. Also, the basic characteristics of directional wind speeds were assessed by means of local annual maximum wind speeds. From the method of assessment of the characteristics of directional wind speeds, their goodness-of-fit was verified by applying extreme value distribution to the data on annual maximum wind speeds from the Korea Meteorological Administration. To consider the characteristics of directional winds, an assessment method is suggested that divides the directional wind pattern of each directional wind speed into four groups. From the study results, all the data on directional wind speeds based on the Gumbel distribution were examined using data on annual maximum wind speeds from Seoul, Tongyung, and Incheon. Since the Gumbel model of all directional wind speeds has independent probability characteristics that govern the 4 directional wind pattern groups, the application ratio proposed was based on the assessment of these four groups. According to the goodness-of-fit of the data on the annual maximum wind speeds based on the Gumbel distribution, new application ratios were proposed that consider the directional wind speeds in Seoul, Tongyung, and Incheon.

Improved first-order method for estimating extreme wind pressure considering directionality for non-typhoon climates

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.473-482
    • /
    • 2020
  • The first-order method for estimating the extreme wind pressure on building envelopes with consideration of the directionality of wind speed and wind pressure is improved to enhance its computational efficiency. In this improved method, the result is obtained directly from the empirical distribution of a random selection of annual maximum wind pressure samples generated by a Monte Carlo method, rather than from the previously utilized extreme wind pressure probability distribution. A discussion of the relationship between the first- and full-order methods indicates that when extreme wind pressures in a non-typhoon climate with a high return period are estimated with consideration of directionality, using the relatively simple first-order method instead of the computationally intensive full-order method is reasonable. The validation of this reasonableness is equivalent to validating two assumptions to improve its computational efficiency: 1) The result obtained by the full-order method is conservative when the extreme wind pressure events among different sectors are independent. 2) The result obtained by the first-order method for a high return period is not significantly affected when the extreme wind speeds among the different sectors are assumed to be independent. These two assumptions are validated by examples in different regions and theoretical derivation.

Estimation of Extreme Wind Speeds in Southern and Western Coasts by Typhoon Simulation (태풍 시뮬레이션을 통한 서남해안의 극한풍속 예측)

  • Kwon, Soon-Duck;Lee, Jae-Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.431-438
    • /
    • 2008
  • An updated Monte Carlo procedure for Typhoon simulation is presented to estimate the extreme wind speed at typhoon prone southern and western coasts in Korea. The reconstructed wind field model for typhoon in this study is compared with measured typhoon data for validation. The fitness of the proposed probability distribution models for typhoon parameters are tested by using data for the typhoon passed near the specific site. The simulated maximum wind speed associated with various return periods along southern and western coasts indicate that the extreme wind speed gradually increases inversely according to latitude of the coast, and that the basic wind speeds given in Korea Bridge Design Code are excessive compared with present results.

Extreme wind prediction and zoning

  • Holmes, J.D.;Kasperski, M.;Miller, C.A.;Zuranski, J.A.;Choi, E.C.C.
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.269-281
    • /
    • 2005
  • The paper describes the work of the IAWE Working Group WGF - Extreme Wind Prediction and Zoning, one of the international codification working groups set up in 2000. The topics covered are: the international database of extreme winds, quality assurance and data quality, averaging times, return periods, probability distributions and fitting methods, mixed wind climates, directionality effects, the influence of orography, rare events and simulation methods, long-term climate change, and zoning and mapping. Recommendations are given to promote the future alignment of international codes and standards for wind loading.

Non-stationary statistical modeling of extreme wind speed series with exposure correction

  • Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.129-146
    • /
    • 2018
  • Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.

Meteorological events causing extreme winds in Brazil

  • Loredo-Souza, Acir M.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.177-188
    • /
    • 2012
  • The meteorological events that cause most strong winds in Brazil are extra-tropical cyclones, downbursts and tornadoes. However, one hurricane formed off the coastline of southern Brazil in 2005, a tropical storm formed in 2010 and there are predictions that others may form again. Events such as those described in the paper and which have occurred before 1987, generate data for the wind map presented in the Brazilian wind loading code NBR-6123. This wind map presents the reference wind speeds based on 3-second gust wind speed at 10 m height in open terrain, with 50-year return period, varying from 30 m/s (north half of country) to 50 m/s (extreme south). There is not a separation of the type of climatological event which generated each registered velocity. Therefore, a thunderstorm (TS), an extra-tropical pressure system (EPS) or even a tropical cyclone (TC) are treated the same and its resulting velocities absorbed without differentiation. Since the flow fields generated by each type of meteorological event may be distinct, the indiscriminate combination of the highest wind velocities with aerodynamic coefficients from boundary layer wind tunnels may lead to erroneous loading in buildings.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.