• Title/Summary/Keyword: extreme velocity

Search Result 105, Processing Time 0.033 seconds

ORFEUS SURVEYS OF THE INTERSTELLAR MOLECULAR HYDROGEN (ORFEUS 위성을 이용한 성간 수소분자의 전천 관측)

  • Lee, Dae-Hee;Seon, Kwang-Il;Min, Kyoung-Wook
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.11-20
    • /
    • 2005
  • We present measurements of interstellar $H_2$ absorption lines in the continuum spectra of 54 early-type stars in the Galactic disk and halo and 3 stars in the Magellanic Clouds. The data were obtained with the Berkeley Extreme and Far-Ultraviolet Spectrometer (BEFS), part of the ORFEUS telescope, which flew on the ORFEUS-SPAS I and II space-shuttle missions in 1993 and 1996, respectively. The spectra extend from the interstellar cutoff at $912{\AA}$ to about $1200{\AA}$ with a spectral resolution of ${\sim}3000$ and statistical signal-to-noise ratios between 10 and 65. Assuming a velocity profile derived from optical observations (when available), we model the column densities N(J) of the rotational levels J = 0 through 5 for each line of sight. Our data reproduce the relationships among molecular and total hydrogen column density, fractional molecular abundance, and reddening first seen in Copernicusobservations of nearby stars (Savage et al. 1977). The results show that most of these molecular clouds have $H_2$ total column densities between $10^{15}cm^{-2}$ and $10^{21}cm^{-2}$, and kinetic temperatures from 21 K to 232 K, with average of 89 K, consistent with the result of Copernicus (Savage et al. 1977).

Assembly strategies of wind turbine towers for minimum fatigue damage

  • Nunez-Casado, Cristina;Lopez-Garcia, Oscar;de las Heras, Enrique Gomez;Cuerva-Tejero, Alvaro;Gallego-Castillo, Cristobal
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.569-588
    • /
    • 2017
  • The aim of this paper is to present a method to obtain the dynamic response of a wind turbine tower in time domain by means of the generation of time series and to estimate the associated fatigue damage by means of a Rainflow counting algorithm. The proposed method is based on assuming the vortex shedding is a bidimensional phenomena and on following a classical modal superposition method to obtain the structure dynamic response. Four different wind turbine tower geometric configurations have been analyzed in a range of usual wind velocities and covering extreme wind velocities. The obtained results have shown that, depending on the turbulence intensity and the mean wind velocity, there are tower geometric configurations more advantageous from the fatigue load standpoint. Consequently, the presented model can be utilized to define assembly strategies oriented to fatigue damage minimization.

Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

  • Bae, Jonghee;Song, Young-Joo;Kim, Young-Rok;Kim, Bangyeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.281-288
    • /
    • 2017
  • The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon's gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

The Extreme Low Speed Motor Observer and Brake Torque Control Technologies (극 저속 전동기용 관측기 및 제동 토크 제어 기술)

  • Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.363-368
    • /
    • 2013
  • This paper relates to the electric braking, the permanent magnet synchronous motor vector control is suspended until the applied, and propose a new scheme by the controller in the observer to estimate the position and velocity using the Resolver speed detector. In addition, as a way to control the speed by braking torque at low speed, the pole of a stop just before the stop electrical braking. As a result, noise and dust abatement, consumption, reduction of the brake shoe increase the maintainability of comfort and energy use, enhances the effect of EMU performance improved sikyeoteum could see.

Current Issues, Trends and Possibilities in Water Sector in Nepal

  • Shrestha, Hari Krishna
    • Water for future
    • /
    • v.52 no.8
    • /
    • pp.56-66
    • /
    • 2019
  • Nepal is bestowed with abundant water. With more than 1500 mm average annual rainfall in the country, a vast quantity of underutilized groundwater in the Terai belt, and the water stored in snowcaps in the Himalayas, aquifers in the mountains and glacial lakes, Nepal is potentially in an advantageous position in terms of per capita availability. However, low emphasis in management aspect of water and high emphasis in infrastructural developments related to water resources management has resulted in conversion of water in Nepal from a resource to a burden. The global climate change, reduction in number of rainy days, increase in intensity of rainfall during wet monsoon season, encroachment of river banks for settlement, inadequate release of environmental flows from hydropower plants, and attempt to tame the mighty and high velocity rivers of Nepal have resulted in increasing number of water induced disasters (flood and landslide), rise in conflict between local residents and hydropower developers, higher number of devastating landslides, and in some extreme cases mass migration of residents resulting in climate refugees. There is a ray of hope; the awareness level of the people regarding sustainable use of water resources is increasing, the benefit sharing mechanism is gradually being implemented, the role of interdisciplinary and integrated water resources management is appreciated at a higher level and the level of preparedness against flood and landslides is at a higher degree compared to a couple of decades ago. With the use of renewable energy sources, the possibilities for sustainable and productive use of water are on the rise in Nepal.

Flood Risk for Power Plant using the Hydraulic Model and Adaptation Strategy

  • Nguyen, Thanh Tuu;Kim, Seungdo;Van, Pham Dang Tri;Lim, Jeejae;Yoo, Beomsik;Kim, Hyeonkyeong
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 2017
  • This paper provides a mathematical approach for estimating flood risks due to the effects of climate change by developing a one dimensional (1D) hydraulic model for the mountainous river reaches located close to the Yeongwol thermal power plant. Input data for the model, including topographical data and river discharges measured every 10 minutes from July $1^{st}$ to September $30^{th}$, 2013, were imported to a 1D hydraulic model. Climate change scenarios were estimated by referencing the climate change adaptation strategies of the government and historical information about the extreme flood event in 2006. The down stream boundary was determined as the friction slope, which is 0.001. The roughness coefficient of the main channels was determined to be 0.036. The results show the effectiveness of the riverbed widening strategy through the six flooding scenarios to reduce flood depth and flow velocity that impact on the power plant. In addition, the impact of upper Namhan River flow is more significant than Dong River.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Typhoon-Surge Characteristics and the Highest High Water Levels at the Western Coast (서해안의 태풍해일특성과 고극조위)

  • Kang, Ju Whan;Kim, Yang-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.50-61
    • /
    • 2019
  • The aspects of typhoon-induced surges were classified into three types at the Western coast, and their characteristics were examined. The typhoons OLGA (9907) and KOMPASU (1007) were the representative steep types. As they pass close to the coasts with fast translation velocity, the time of maximum surge is unrelated to tidal phase. However, typhoons PRAPIROON (0012) and BOLAVEN (1215) were the representative mild types, which pass at a long distance to the coasts with slow translation velocity, and were characterized by having maximum surge time is near low tide. Meanwhile, typhoons MUIFA (1109) and WINNIE (9713) can be classified into mild types, but they do not show the characteristics of the mild type. Thus they are classified into propagative type, which are propagated from the outside. Analyzing the annual highest high water level data, the highest water level ever had been recorded when the WINNIE (9713) had attacked. At that time, severe astronomical tide condition overlapped modest surge. Therefore, if severe astronomical tide encounter severe surge in the future, tremendous water level may be formed with very small probability. However, considering that most of the huge typhoons are mild type, time of maximum surge tends to occur at low tide. In case of estimating the extreme water level by a numerical simulation, it is necessary not only to apply various tide conditions and accompanying tide-modulated surge, but also to scrutinize typhoon parameters such as translation velocity and so on.