• Title/Summary/Keyword: extreme velocity

Search Result 105, Processing Time 0.024 seconds

Experimental analysis on the characteristics of enthalpy probe immersed in arc plasma flow (아크 플라즈마 유동에 삽입된 엔탈피 탐침의 동작특성 실험)

  • Seo, Jun-Ho;Nam, Jun-Seok;Choi, Seong-Man;Hong, Bong-Gun;Hong, Sang-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1240-1246
    • /
    • 2010
  • Enthalpy probe with the inner and outer diameters of 1.5 mm and 4.8 mm, respectively, is designed and used to measure the temperatures and velocities along the centerline of Ar arc plasma flow until the probe was destroyed. For this purpose, Ar arc plasma flow is generated by non-transferred type DC arc heater with the power level of 17 kW. From this experiment, it is shown that the designed enthalpy probe can measure the temperature and velocity of arc plasma flow up to 12,000 K and 600 m/s, respectively, without destroy of probe tip. In this extreme case, the arc plasma flow is calculated to transfer the heat flux of ${\sim}5{\times}10^7\;W/m^2$ to the probe based on the heat and thermal boundary equations near the forward stagnation point of a body immersed in arc plasma flow. Consequently, the designed enthalpy probe can measure the wide ranges of plasma temperatures, velocities and concentrations simultaneously, which are generated by various types of arc heaters within the heat flux ranges of $0{\sim}5{\times}10^7\;W/m^2$ on the probe tip.

Effects of Joint Mobilization Techniques on the Joint Receptors (관절 가동운동이 관절 감수기에 미치는 영향)

  • Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.2 no.1
    • /
    • pp.9-19
    • /
    • 1996
  • Type I, II, III are regarded as "true" joint receptors, type IV is considered a class of pain receptor. Type I, II and III mechanoreceptors, via static and dynamic input, signal joint position, intraarticular pressure changes, and the direction, amplitude, and velocity of joint movements. Type I mechanoreceptor subserve both static and dynamic physiologic functions. Type I are found primarily in the stratum fibrosum of the joint capsule and ligaments. Type I receptors have a low threshold for activation and are allow to adapt to changes altering their firing frequency. Type II receptors have a low threshold for activation. These dynamic receptors respond to joint movement. Type II receptors are thus termed rapidly adapting. Type II joint receptors are located at the junction of the synovial membrane and fibrosum of the joint capsule and intraarticular and extraarticular fat pads. Type III receptors have been found in collateral ligaments of the joints of the extremities. Morphologically similar to Golgi tendon organ. These dynamic receptors have a high threshold to stimulation and are slowly adating. Type IV receptors possess free nerve ending that have been found in joint capsule and fat pads. They are not normally active, but respond to extreme mechanical deformation of the joint as well as to direct chemical or mechanical irritation. Small amplitude oscillatory and distraction movements(joint mobilization) techniques are used to stimulate the mechanoreceptors that may inhibit the transmission of nociceptors stimuli at the spinal cord or brain stem levels.

  • PDF

The Prediction and Analysis of Bed Changes Characteristics in the Seomjin River Downstream (섬진강 하류의 하상변동 특성 분석 및 예측)

  • Ceon, Ir-Kweon;Kim, Min-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2009
  • It is to use effectively for stream channel and watershed management as the prediction and the analysis of bed changes characteristics in the Seomjin river downstream. The necessary data (section, bed composition material, pivot point water elevation, coefficient of roughness) with regard to analysis of the bed changes characteristics were based upon the survey data and analysis results in the Seomjin river maintenance basic plan. The prediction of bed changes was also completed with HEC-6 model. The study results were summarized as follows: The main factor of bed changes in the Seomjin river downstream can be decided by extreme extraction of bed aggregate rather than the change of hydrological data. According to the analysis of bed stability based on the relation between friction velocity and representative grain size, and the relation between dimensionless tractive force and representative grain size, the Seomjin river downstream appears to be increased overall. The bed composition material in the stream channel of the Seomjin river of 2003 year shows higher composition rate of gravel and lower composition rate of sand as compared to those of 1989 year. According to result that the prediction of bed changes, it is estimated that the bed will be risen approximately 1.5 m to the place up to 9 km from the estuary, have been repetitively risen and fallen up to 1 m to the place between $9{\sim}21\;km$ section, and fallen about 0.5m to the place between $22{\sim}25\;km$ section. As a result, the bed of the Seomjin river downstream can be decided to be risen gradually. However, since the prediction of this study is based on the assumption that there will be no forced aggregate picking, the bed changes can be much greater than expected when there is a massive aggregate picking as it had happened before.

Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section (중공트랙단면 에코필라 사방댐의 비선형 충돌해석)

  • Kim, Hyun-Gi;Kim, Bum-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.430-439
    • /
    • 2019
  • In this study, a nonlinear impact analysis was performed to evaluate the safety and damage of an eco-pillar debris barrier with a hollow cross-section, which was proposed to improve constructability and economic efficiency. The construction of concrete eco-pillar debris barriers has increased recently. However, there are no design standards concerning debris barriers in Korea, and it is difficult to find a study on performance evaluations in extreme environments. Thus, an analysis of an eco-pillar debris barrier was done using the rock impact speed, which was estimated from the debris flow velocity. The diameters of rocks were determined by ETAG 27. The impact position, angles, and rock diameter were considered as variables. A concrete nonlinear material model was applied, and the estimation of damage was done by ABAQUS software. As a result, the damage ratio was found to be less than 1.0 at rock diameters of 0.3 m and 0.5 m, but it was 1.39 when the diameter was 0.7 m. This study could be used as basic data on impact force in the design of the cross section of an eco-pillar debris barrier.

Analysis of the Effect of the Revised Ground Amplification Factor on the Macro Liquefaction Assessment Method (개정된 지반증폭계수의 Macro적 액상화 평가에 미치는 영향 분석)

  • Baek, Woo-Hyun;Choi, Jae-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.2
    • /
    • pp.5-15
    • /
    • 2020
  • The liquefaction phenomenon that occurred during the Pohang earthquake (ML=5.4) brought new awareness to the people about the risk of liquefaction caused by the earthquake. Liquefaction hazard maps with 2 km grid made in 2014 used more than 100,000 borehole data for the whole country, and regions without soil investigation data were produced using interpolation. In the mapping of macro liquefaction hazard for the whole country, the site amplification effect and the ground water level 0 m were considered. Recently, the Ministry of Public Administration and Security (2018) published a new site classification method and amplification coefficient of the common standard for seismic design. Therefore, it is necessary to rewrite the liquefaction hazard map reflecting the revised amplification coefficient. In this study, the results of site classification according to the average shear wave velocity in soils before and after revision were compared in the whole country. Also, liquefaction assessment results were compared in Gangseo-gu, Busan. At this time, two ground accelerations corresponding to the 500 and 1,000 years of return period and two ground water table, 5 m for the average condition and 0 m the extreme condition were applied. In the drawing of liquefaction hazard map, a 500 m grid was applied to secure a resolution higher than the previous 2 km grid. As a result, the ground conditions that were classified as SC and SD grounds based on the existing site classification standard were reclassified as S2, S3, and S4 through the revised site classification standard. Also, the result of the Liquefaction assessments with a return period of 500 years and 1,000 years resulted in a relatively overestimation of the LPI applied with the ground amplification factor before revision. And the results of this study have a great influence on the liquefaction assessment, which is the basis of the creation of the regional liquefaction hazard map using the amplification factor.