• 제목/요약/키워드: extreme precipitation events

검색결과 109건 처리시간 0.038초

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

Climate Change Concerns in Mongolia

  • Dagvadorj, D.;Gomboluudev, P.;Natsagdorj, L.
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.47-54
    • /
    • 2003
  • Climate of Mongolia is a driven force on natural conditions as well as socio-economic development of the country. Due to the precariousness of climate conditions and traditional economic structure, natural disasters, specially disasters of meteorological and hydrological origin, have substantial effect upon the natural resources and socio-economic sectors of Mongolia. Mongolia's climate is characterized by high variability of weather parameters, and high frequency and magnitude of extreme climate and weather events. During the last few decades, climate of the country is changing significantly under the global warning. The annual mean air temperature for the whole territory of the country has increased by $1.56^{\circ}C$ during the last 60 years,. The winter temperature has increased by $1.56^{\circ}C$. These changes in temperature are spatially variable: winter warming is more pronounced in the high mountains and wide valleys between the mountains, and less so in the steppe and Gobi regions. There is a slight trend of increased precipitation during the last 60 years. The average precipitation rate is increased during 1940-1998 by 6%. This trend is not seasonally consistent: while summer precipitation increased by 11 %, spring precipitation decreased by 17. The climate change studies in Mongolia show that climate change will have a significant impact on natural resources such as water resources, natural rangeland, land use, snow cover, permafrost as well as major economic activities of arable farming, livestock, and society (i.e. human health, living standards, etc.) of Mongolia. Therefore, in new century, sustainable development of the country is defined by mitigating and adaptation policies of climate change. The objective of the presentation is to contribute one's idea in the how to reflect the changes in climate system and weather extreme events in the country's sustainable development concept.

  • PDF

Extreme drought analysis using Natural drought index and Gi∗ statistic

  • Tuong, Vo Quang;So, Jae-Min;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.124-124
    • /
    • 2020
  • This study proposes a framework to evaluate extreme drought using the natural drought index and hot spot analysis. The study area was South Korea. Data were used from 59 automatic synoptic observing system stations. The variable infiltration capacity model was used for the period from 1981 to 2016. The natural drought index was constructed from precipitation, runoff and soil moisture data, which reflect the water cycle. The average interval, duration and severity of extreme drought events were determined following Run theory. The most extreme drought period occurred in 2014-2016, with 46 of 59 weather stations exhibition drought conditions and 78% exhibition extreme drought conditions. The Inje and Seosan station exhibited the longest drought duration of 6 months, and the most severe drought was 5 times higher than the extreme drought severity threshold. The hot spot analysis was used to explore the extreme drought conditions and showed an increasing trend in the middle and northeastern parts of South Korea. Overall, this study provides water resource managers with essential information about locations and significant trends of extreme drought.

  • PDF

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

우리나라에 발생한 태풍의 시간 강우량 특성에 관한 연구 (A Study on Special Quality of Hourly Precipitation of Typhoon happened in Korea)

  • 오태석;안재현;문영일
    • 한국수자원학회논문집
    • /
    • 제40권9호
    • /
    • pp.709-722
    • /
    • 2007
  • 우리나라는 여름철의 큰 호우로 인해 주기적인 홍수피해가 발생하며, 이러한 호우의 원인은 태풍과 집중호우로 구분 할 수 있다 태풍은 열대 지방에서 발생하여 주기적으로 우리나라를 내습하여 극심한 강우와 강풍으로 인해 큰 피해를 발생시키고 있으며, 일반적으로 태풍에 의한 피해가 집중호우보다 큰 것으로 알려져 있다. 따라서 본 연구에서는 우리나라에 발생하는 강우 사상을 태풍과 집중호우로 구분하여 호우 원인별로 지속시간별 연 최대 강우량을 구축하였다. 따라서 발생 원인별로 구축된 시간강우자료의 통계분석을 통해 기본적인 특성을 파악하고 빈도해석을 통해 강우의 발생 원인별로 확률강우량을 산정하여 비교 분석하였다. 분석 결과에서 태풍에 의해 산정된 확률강우량은 지속시간과 재현기간이 커질수록 확률강우량의 증가가 전호우에 의한 확률강우량 보다 큰 지점이 있는 것으로 나타났다.

How do diverse precipitation datasets perform in daily precipitation estimations over Africa?

  • Brian Odhiambo Ayugi;Eun-Sung Chung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.158-158
    • /
    • 2023
  • Characterizing the performance of precipitation (hereafter PRE) products in estimating the uncertainties in daily PRE in the era of global warming is of great value to the ecosystem's sustainability and human survival. This study intercompares the performance of different PRE products (gauge-based, satellite and reanalysis) sourced from the Frequent Rainfall Observations on GridS (FROGS) database over diverse climate zones in Africa and identifies regions where they depict minimal uncertainties in order to build optimal maps as a guide for different climate users. This is achieved by utilizing various techniques, including the triple collection (TC) approach, to assess the capabilities and limitations of different PRE products over nine climatic zones over the continent. For daily scale analysis, the uncertainties in light PRE (0.1 5mm/day) are prevalent over most regions in Africa during the study duration (2001-2016). Estimating the occurrence of extreme PRE events based on daily PRE 90th percentile suggests that extreme PRE is mainly detected over central Africa (CAF) region and some coastal regions of west Africa (WAF) where the majority of uncorrected satellite products show good agreement. The detection of PRE days and non-PRE days based on categorical statistics suggests that a perfect POD/FAR score is unattainable irrespective of the product type. Daily PRE uncertainties determined based on quantitative metrics show that consistent, satisfactory performance is demonstrated by the IMERG products (uncorrected), ARCv2, CHIRPSv2, 3B42v7.0 and PERSIANN_CDRv1r1 (corrected), and GPCC, CPC_v1.0, and REGEN_ALL (gauge) during the study period. The optimal maps that show the classification of products in regions where they depict reliable performance can be recommended for various usage for different stakeholders.

  • PDF

2017년 극심한 봄 가뭄의 기상학적 특성 및 통계학적 가뭄빈도해석 (Assessment of the Meteorological Characteristics and Statistical Drought Frequency for the Extreme 2017 Spring Drought Event Across South Korea)

  • 방나경;남원호;홍은미
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.37-48
    • /
    • 2018
  • The extreme 2017 spring drought affected a large portion of central and western South Korea, and was one of the most climatologically driest spring seasons over the 1961-2016 period of record. This drought was characterized by exceptionally low precipitation, with total precipitation from January to June being 50% lower than the mean normal precipitation (1981-2010) over most of western South Korea. In this study, for the quantitative drought impact analysis, the widely-used Standardized Precipitation Index (SPI) and the statistical drought frequency are compared with observed meteorological characteristics and anomalies. According to the drought frequency analysis of monthly cumulative precipitation during January and May in 2017, Gyeonggi-do, Chungcheong-do, and Jeollanam-do areas showed more than drought frequency over 100 years. Gyeongsangnam-do area showed more than drought frequency over 200 years based on annual precipitation in 2017. The South Korean government (Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC)) have been operating a government-level drought monitoring system since 2016. Results from this study can be used to improve the drought monitoring applications of future drought events, as well as drought planning and preparedness in South Korea.

SWAP 지수를 활용한 한강유역의 가뭄-홍수 급변사상 특성 분석 (Characteristics of drought-flood abrupt alternation events using SWAP index in the Han River basin)

  • 손호준;이진영;유지영;김태웅
    • 한국수자원학회논문집
    • /
    • 제54권11호
    • /
    • pp.925-932
    • /
    • 2021
  • 가뭄-홍수 급변사상은 가뭄과 홍수가 중첩된 사상으로, 생태계뿐만 아니라 산업과 농업 그리고 사회경제까지 큰 영향을 미치기 때문에 가뭄이나 홍수의 개별 사상보다 대처하기 어렵다. 하지만 국내의 가뭄-홍수 급변사상에 대한 연구는 부족한 실정이다. 본 연구에서는 표준가중평균강수(SWAP) 지수를 사용하여 가뭄-홍수 급변사상의 특성들을 분석하였다. SWAP 지수는 일강수량에 시간 가중치를 적용한 가중평균강수(WAP) 지수를 표준화 것으로, 한강유역의 중권역별 면적평균강수량(1966-2018년)을 사용해 산정하였다. SWAP 지수는 가뭄·홍수의 단일사상 분석 뿐 아니라 가뭄-홍수 급변사상을 분석하는데 용이하고, 시간의 척도 측면에서도 유연하게 사용할 수 있다. 또한, 심각도 K를 사용해 가뭄-홍수 급변사상의 상대적인 심각도를 지역별로 분석할 수 있다. 연구 결과, 한강유역 30개의 중권역 중 20개의 중권역이 시간이 지남에 따라 가뭄-홍수 급변사상의 심각도가 상승하는 추세가 확인되었고, 중권역별 가뭄-홍수 급변사상의 발생 빈도와 심각도 등을 고려하여 위험지역을 확인할 수 있었다. 예를 들어, 한강유역 내 가뭄-홍수 급변사상으로 인한 위험지역은 남한강상류(#1001) 유역으로 나타났다.

고해상도 소기후모형을 이용한 국내 167개 시·군별 이상기상 발생빈도 자료 (Extreme Weather Frequency Data over 167 Si-gun of S. Korea with High-resolution Topo-climatology Model)

  • 조세라;심교문;박주현;김용석;허지나
    • 한국농림기상학회지
    • /
    • 제22권3호
    • /
    • pp.164-170
    • /
    • 2020
  • 기상조건은 농업에 영향을 미치는 주요 환경요인이며, 특히 이상기상의 발생은 작물의 성장 및 작황에 큰 영향을 미친다. 그러므로 이상기상으로 인한 농업적 피해를 줄이기 위해 관측을 바탕으로 한 이상기상의 발생 빈도 분석 및 통계자료가 필요하다. 본 연구에서는 30m 및 270m 해상도의 고해상도 소기후 모형을 통해 상세화된 3종의 주요 기상변수(기온, 강수, 일사량)를 이용해, 남한의 167개 시·군의 1981년부터 2019년 동안 발생한 이상기상 발생에 대한 통계자료를 소개하였다. 소기후 모형을 통해 추정된 167개 시·군 이상기상 현상 발생 특징은 기상청의 종관 기상 관측자료와 비교해 보았을 때 전국적인 분포 및 변화 경향을 잘 반영하는 것으로 나타났다. 또한, 기상청 종관 기상 관측 시스템에서 관측하지 못하는 지역의 기상까지 반영한 고해상도의 자료를 활용하였으므로 해당 시·군의 이상기상을 더욱 현실적으로 나타내었다. 본 연구에서 소개하는 시·군별 이상기상 통계자료는 농업 부문의 기상재해 취약성 평가 및 피해 저감을 위한 정책 기초자료로 활용될 수 있을 것으로 생각된다.

Spatiotemporal distribution of downscaled hourly precipitation for RCP scenarios over South Korea and its hydrological responses

  • Lee, Taesam;Park, Taewoong;Park, Jaenyoung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.247-247
    • /
    • 2015
  • Global Climate Model (GCM) is too coarse to apply at a basin scale. The spatial downcsaling is needed to used to permit the assessment of the hydrological changes of a basin. Furthermore, temporal downscaling is required to obtain hourly precipitation to analyze a small or medium basin because only few or several hours are used to determine the peak flows after it rains. In the current study, the spariotemporal distribution of downscaled hourly precipitation for RCP4.5 and RCP8.5 scenarios over South Korea is presented as well as its implications over hydrologica responses. Mean hourly precipitation significantly increases over the southern part of South Korea, especially during the morning time, and its increase becomes lower at later times of day in the RCP8.5 scenario. However, this increase cannot be propagated to the mainland due to the mountainous areas in the southern part of the country. Furthermore, the hydrological responses employing a distributed rainfall-runoff model show that there is a significant increase in the peak flow for the RCP8.5 scenario with a slight decrease for the RCP4.5 scenario. The current study concludes that the employed temporal downscaling method is suitable for obtaining the hourly precipitation data from daily GCM scenarios. In addition, the rainfall runoff simulation through the downscaled hourly precipitation is useful for investigating variations in the hydrological responses as related to future scenarios.

  • PDF