• Title/Summary/Keyword: extreme indicators

Search Result 42, Processing Time 0.025 seconds

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.

Evaluating the impacts of extreme agricultural droughts under climate change in Hung-up watershed, South Korea

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Wan-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.143-143
    • /
    • 2021
  • Climate change indicators, mainly frequent drought which has happened since the drought of 1994, 1995, and 2012 causing the devastating effect to the agricultural sector, and could be more disruptive given the context of climate change indicators by increasing the temperature and more variable and extreme precipitation. Changes in frequency, duration, and severity of droughts will have enormous impacts on agriculture production and water management. Since both the possibility of drought manifestation and substantial yield losses, we are propositioning an integrated method for evaluating past and future agriculture drought hazards that depend on models' simulations in the Hung-up watershed. to discuss the question of how climate change might influence the impact of extreme agriculture drought by assessing the potential changes in temporal trends of agriculture drought. we will calculate the temporal trends of future drought through drought indices Standardized Precipitation Evapotranspiration Index, Standardized Precipitation Index, and Palmer drought severity index by using observed data of (1991-2020) from Wonju meteorological station and projected climate change scenarios (2021-2100) of the Representative Concentration Pathways models (RCPs). expected results confirmed the frequency of extreme agricultural drought in the future projected to increase under all studied RCPs. at present 100 years drought is anticipated to happen since the result showing under RCP2.6 will occur every 24 years, RCP4.5 every 17 years, and RCPs8.5 every 7 years, and it would be double in the largest warming scenarios. On another side, the result shows unsupportable water management, could cause devastating consequences in both food production and water supply in extreme events. Because significant increases in the drought magnitude and severity like to be initiate at different time scales for each drought indicator. Based on the expected result that the evaluating the impacts of extreme agricultural droughts and recession could be used for the development of proactive drought risk management, policies for future water balance, prioritize sustainable strengthening and mitigation strategies.

  • PDF

On the Change of Extreme Weather Event using Extreme Indices (극한지수를 이용한 극한 기상사상의 변화 분석)

  • Kim, Bo Kyung;Kim, Byung Sik;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.41-53
    • /
    • 2008
  • Unprecedented weather phenomena are occurring because of climate change: extreme heavy rains, heat waves, and severe rain storms after the rainy season. Recently, the frequency of these abnormal phenomena has increased. However, regular pattern or cycles cannot be found. Analysis of annual data or annual average data, which has been established a research method of climate change, should be applied to find frequency and tendencies of extreme climate events. In this paper, extreme indicators of precipitation and temperature marked by objectivity and consistency were established to analyze data collected by 66 observatories throughout Korea operated by the Meteorological Administration. To assess the statistical significance of the data, linear regression and Kendall-Tau method were applied for statistical diagnosis. The indicators were analyzed to find tendencies. The analysis revealed that an increase of precipitation along with a decrease of the number of rainy days. A seasonal trend was also found: precipitation rate and the heavy rainfall threshold increased to a greater extent in the summer(June-August) than in the winter (September-November). In the meanwhile, a tendency of temperature increase was more prominent in the winter (December-February) than in the summer (June-August). In general, this phenomenon was more widespread in inland areas than in coastal areas. Furthermore, the number of winter frost days diminished throughout Korea. As was mentioned in the literature, the progression of climate change has influenced the increase of temperature in the winter.

Vulnerability Assessment for Public Health to Climate change Using Spatio-temporal Information Based on GIS (GIS기반 시공간정보를 이용한 건강부문의 기후변화 취약성 평가)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Oh, Su-Hyun;Byun, Jung-Yeon
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.13-24
    • /
    • 2012
  • To prevent the damage to human health by climate change, vulnerability assessment should be conducted for establishment of adaptation strategies. In this study, vulnerability assessment was conducted to provide information about vulnerable area for making adaptation policy. vulnerability assessment for human health was divided into three categories; extreme heat, ozone, and epidemic disease. To assess vulnerability, suitable indicators were selected by three criteria; sensitivity, adaptive capacity, and exposure, spatial data of indicators were prepared and processed using GIS technique. As a result, high vulnerability to extreme heat was shown in the low land regions of southern part. And vulnerability to harmful ozone was high in the surrounding area of Dae-gu basin and metropolitan area with a number of automobiles. Vulnerability of malaria and tsutsugamushi disease have a region-specific property. They were high in the vicinity of the Dimilitarized zone and south-western plain, respectively. In general, vulnerability of human health was increased in the future time. Vulnerable area was extended from south to central regions and from plain to low mountainous regions. For assessing vulnerability with high accuracy, it is necessary to prepare more related indicators and consider weight of indicators and use climate prediction data based on the newly released scenario when assessing vulnerability.

Investigating Changes over Time of Precipitation Indicators (강수지표의 시간에 따른 변화 조사)

  • Han, Bong-Koo;Chung, Eun-Sung;Lee, Bo-Ram;Sung, Jang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.233-250
    • /
    • 2013
  • Gradually or radically change how the characteristics of the climate characteristic using change point analysis for the precipitation indicators were investigated. Significantly the amount, extreme and frequency were separated by precipitation indicators, each indicator RIA(Rainfall Index for Amount), RIE(Rainfall Index for Extremes) and RIF(Rainfall Index for Frequency) was defined. Bayesian Change Point was applied to investigate changing over time of precipitation indicators calculated. As the result of analysis, precipitation indicators in South Korea was found to recently increase all indicators except for the annual precipitation days and 200-yr precipitation. RIA revealed that there was a very clear point of significance for the change in Ulleungdo, Relatively significant results for RIE were identified in Gumi, Jecheon and Seogwipo. Also, since the 1990s, an increase in the number of variation points, and the horizontal width of the fluctuation point was being relatively wider. Based on these results, rethink the precipitation on the assumption of stationarity was judged necessary.

Moment-rotation prediction of precast beam-to-column connections using extreme learning machine

  • Trung, Nguyen Thoi;Shahgoli, Aiyoub Fazli;Zandi, Yousef;Shariati, Mahdi;Wakil, Karzan;Safa, Maryam;Khorami, Majid
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.639-647
    • /
    • 2019
  • The performance of precast concrete structures is greatly influenced by the behaviour of beam-to-column connections. A single connection may be required to transfer several loads simultaneously so each one of those loads must be considered in the design. A good connection combines practicality and economy, which requires an understanding of several factors; including strength, serviceability, erection and economics. This research work focuses on the performance aspect of a specific type of beam-to-column connection using partly hidden corbel in precast concrete structures. In this study, the results of experimental assessment of the proposed beam-to-column connection in precast concrete frames was used. The purpose of this research is to develop and apply the Extreme Learning Machine (ELM) for moment-rotation prediction of precast beam-to-column connections. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models was accessed based on simulation results and using several statistical indicators.

Use of various drought indices to analysis drought characteristics under climate change in the Doam watershed

  • Sayed Shajahan Sadiqi;Eun-Mi Hong;Won-Ho Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.178-178
    • /
    • 2023
  • Drought and flooding have historically coexisted in Korea, occurring at different times and with varying cycles and trends. The drought indicators measured were (PDSI), (SPI), and (SPEI) in order to statistically analyze the annual or periodic drought occurrence and objectively evaluate statistical characteristics such as the periodicity, tendency, and frequency of occurrence of droughts in the Doam watershed. To compute potential evapotranspiration (PET), both Thornthwaite (Thor) and Penman-Monteith (PM) parameterizations were considered, and the differences between the two PET estimators were analyzed. Hence, SPIs 3 and SPIs 6 revealed a tendency to worsen drought in the spring and winter and a tendency to alleviate drought in the summer in the study area. The seasonal variability trend did not occur in the SPIs 12 and PDSI, as it did in the drought index over a short period. As a result of the drought trend study, the drought from winter to spring gets more severe, in addition to the duration of the drought, although the periodicity of the recurrence of the drought ranged from 3 years to 6 years at the longest, indicating that SPIs 3 showed a brief time of around 1 year. SPIs 6 and SPIs 12 had a term of 4 to 6 years, and PDSI had a period of roughly 6 years. Based on the indicators of the PDSI, SPI, and SPEI, the drought severity increases under climate change conditions with the decrease in precipitation and increased water demand as a consequence of the temperature increase. Therefore, our findings show that national and practical measures are needed for both winter and spring droughts, which happen every year, as well as large-scale and extreme droughts, which happen every six years.

  • PDF

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US (다양한 기후요소와 지표에 대한 CMIP5 GCMs 모델 성능 평가 -미국 남동부 지역을 대상으로-)

  • Hwang, Syewoon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1039-1050
    • /
    • 2014
  • The goal of this study is to demonstrate the diversity of model performance for various climatic elements and indicators. We evaluated the skills of the most advanced 17 General Circulation Models (GCMs) i.e., CMIP5 (Climate Model Inter-comparison project, phase 5) climate models in reproducing retrospective climatology from 1950 to 2000 over the Southeast US for the key climatic elements important in the hydrological and agricultural perspectives (i.e., precipitation, maximum and minimum temperature, and wind speed). The biases of raw CMIP5 GCMs were estimated for 16 different climatic indicators that imply mean climatology, temporal variability, extreme frequency, etc. using a grid-based observational dataset as reference. Based on the error (RMSE) and correlation (R) of GCM outputs, the error-based GCM ranks were assigned on average over the indicators. Overall, the GCMs showed much better accuracy in representing mean climatology of temperature comparing to other elements whereas few GCM showed acceptable skills for precipitation. It was also found that the model skills and ranks would be substantially different by the climatic elements, error statistics applied for evaluation, and indicators as well. This study presents significance of GCM uncertainty and the needs of considering rational strategies for climate model evaluation and selection.

Hydrologic Regime Alteration Analysis of the Multi-Purpose Dam by Indicators of Hydrologic Alterations (수문변화 지표법에 의한 다목적댐의 유량변화 분석)

  • Park, Bong-Jin;Kang, Ki-Ho;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.711-723
    • /
    • 2008
  • In this study, Hydrologic regime alterations(magnitude, magnitude and duration of annual extreme, frequency and duration of high and low pulse, rate and frequency of water condition changes, Range of Variability Approach) were analyzed by using Indicators of Hydrologic Alterations at the 11 major multi-purpose dam. The analysis result of the magnitude of monthly water conditions during drought season, inflow was $6.38m^3/sec{\sim}39.84m^3/sec$ and outflow was $20.36m^3/sec{\sim}49.43m^3/sec$, was increased $1.84%{\sim}200.98%$. The analysis result of the magnitude of monthly water conditions during flood season, inflow was from $79.06m^3/sec{\sim}137.12m^3/sec$ and outflow was from $65.32m^3/sec{\sim}80.16m^3/sec$, was decreased from $18.19%{\sim}40.39%$. The analysis result of the magnitude and duration of annual extreme, 1-day minimum was increased $82.86%{\sim}2,950%$, but 1-day maximum was decreased $34.78%{\sim}83.96%$. The analysis result of the frequency and duration of high and low pulse, low pulse count was decreased $29.67%{\sim}99.07%$ and high pulse count was also decreased $4.6%{\sim}92.35%$ after dam operation. Hydrograph rise rate was decreased $15.84%{\sim}79.31%$ and fall rate was $1.97%{\sim}107.10%$. RVA of 1-day minimum was increased $0.60{\sim}2.67$, also RVA of 1-day maximum was decreased $0.50{\sim}1.00$.