• Title/Summary/Keyword: extreme event

Search Result 169, Processing Time 0.028 seconds

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

Analysis of Changes in Extreme Weather Events Using Extreme Indices

  • Kim, Byung-Sik;Yoon, Young-Han;Lee, Hyun-Dong
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.175-183
    • /
    • 2011
  • The climate of the $21^{st}$ century is likely to be significantly different from that of the 20th century because of human-induced climate change. An extreme weather event is defined as a climate phenomenon that has not been observed for the past 30 years and that may have occurred by climate change and climate variability. The abnormal climate change can induce natural disasters such as floods, droughts, typhoons, heavy snow, etc. How will the frequency and intensity of extreme weather events be affected by the global warming change in the $21^{st}$ century? This could be a quite interesting matter of concern to the hydrologists who will forecast the extreme weather events for preventing future natural disasters. In this study, we establish the extreme indices and analyze the trend of extreme weather events using extreme indices estimated from the observed data of 66 stations controlled by the Korea Meteorological Administration (KMA) in Korea. These analyses showed that spatially coherent and statistically significant changes in the extreme events of temperature and rainfall have occurred. Under the global climate change, Korea, unlike in the past, is now being affected by extreme weather events such as heavy rain and abnormal temperatures in addition to changes in climate phenomena.

The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea (56년간 한반도 강수 및 풍속의 극값 변화)

  • Choi, Eu-Soo;Moon, Il-Ju
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

Hydro-meteorological analysis of January 2021 flood event in South Kalimantan Indonesia using atmospheric-hydrologic model

  • Chrysanti, Asrini;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.147-147
    • /
    • 2022
  • In January 2021 heavy flood affected South Kalimantan with causing many casualties. The heavy rainfall is predicted to be generated due to the ENSO (El Nino-Southern Oscillation). The weak La-Nina mode appeared to generate more convective cloud above the warmed ocean and result in extreme rainfall with high anomaly compared to past historical rainfall event. Subsequently, the antecedent soil moisture distribution showed to have an important role in generating the flood response. Saturated flow and infiltration excess mainly contributed to the runoff generation due to the high moisture capacity. The hydro-meteorological processes in this event were deeply analyzed using the coupled atmospheric model of Weather Research and Forecasting (WRF) and the hydrological model extension (WRF-Hydro). The sensitivity analysis of the flood response to the SST anomaly and the soil moisture capacity also compared. Result showed that although SST and soil moisture are the main contributors, soil moisture have more significant contribution to the runoff generation despite of anomaly rainfall occurred. Model performance was validated using the Global Precipitation Measurement (GPM) and Soil Moisture Operational Products System (SMOPS) and performed reasonably well. The model was able to capture the hydro-meteorological process of atmosphere and hydrological feedbacks in the extreme weather event.

  • PDF

Some recent extreme wind events in New Zealand

  • Turner, R.;Revell, M.;Reese, S.;Moore, S.;Reid, S.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.163-176
    • /
    • 2012
  • Damaging winds, associated with a variety of weather phenomena, are frequently experienced in New Zealand. Observations and modelling of two recent extreme wind events; the Taranaki tornado outbreak of July 2007, and the Greymouth down-slope easterly wind storm of July 2008 are described in detail here. Post-event engineering damage surveys, rare for New Zealand, were done for these storms and the results are summarized here. Finally, the issue of sampling extreme wind events is raised and the need to include detailed numerical modelling analysis to understand wind gust climatologies at observing sites and extending these to wider regions is discussed.

Exploring Near-Future Potential Extreme Events(X-Events) in the Field of Science and Technology -With a Focus on Government Emergency Planning Officers FGI Results -

  • Sang-Keun Cho;Jong-Hoon Kim;Ki-Woon Kim;In-Chan Kim;Myung-Sook Hong;Jun-Chul Song;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.310-316
    • /
    • 2023
  • This study aims to predict uncertain future scenarios that may unfold in South Korea in the near future, utilizing the theory of extreme events(X-events). A group of 32 experts, consisting of government emergency planning officers, was selected as the focus group to achieve this objective. Using the Focus Group Interview (FGI) technique, opinions were gathered from this focus group regarding potential X-events that may occur within the advanced science and technology domains over the next 10 years. The analysis of these opinions revealed that government emergency planning officers regarded the "Obsolescence of current technology and systems," particularly in the context of cyber network paralysis as the most plausible X-event within science and technology. They also put forth challenging and intricate opinions, including the emergence of new weapon systems and ethical concerns associated with artificial intelligence (AI). Given that X-events are more likely to emerge in unanticipated areas rather than those that are widely predicted, the results obtained from this study carry significant importance. However, it's important to note that this study is grounded in a limited group of experts, highlighting the necessity for subsequent research involving a more extensive group of experts. This research seeks to stimulate studies on extreme events at a national level and contribute to the preparation for future X-event predictions and strategies for addressing them.

Static and dynamic mooring analysis - Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions

  • Rho, Yu-Ho;Kim, Kookhyun;Jo, Chul-Hee;Kim, Do-Youb
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.179-187
    • /
    • 2013
  • Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.

A Study on the Evaluation of Drought from Monthly Rainfall Data (월강우자료에 의한 한발측정)

  • Hwang, Eun;Choi, Deog-Soon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.35-45
    • /
    • 1984
  • Generally speaking, agriculture exist in a climatic environment of uncertainty. Namely, normal rainfall value, as given by the mean values, does not exist. Thought on exists, itl does not affect like extreme Precipitation value on the part of agriculture and of others. Therefore, it is important that we measure the duration and severity index of drought caused by extreme precipitation deficit. In this purpose, this study was dealt with the calculation of drought duration and severity indexs by the method of monthly weighting coefficient. There is no quantitive definition of drought that is universally acceptable. Most of the criteria was used to identify drought have been arbitrary because a drought is a 'non-event' as opposed to a distinct event such as a flood. Therefore, confusion arises when an attempt is made to define the drought phenomenon, the calculation of duration, drought index is based on the following four fundamental question, and this study was dealt with the answers of these four questions as they related to this analytical method, as follows. First, the primary interest in this study is to be the lack of precipitation as it relates to agricultural effective rainfall. Second, the time interval was used to be month in this analysis. Third, Drought event, distinguished analytically from other event, is noted by monthly weighting coefficient method based on monthly rainfall data. Fin-ally, the seven regions used in this study have continually affected by drought on account of their rainfall deficit. The result from this method was very similar to the previous papers studied by many workers. Therefore, I think that this method is very available in Korea to identify the duration of drought, the deficit of precipitation and severity index of drought, But according to the climate of Korea exist the Asia Monsoon zone. The monthly weighting coefficient is modify a little, Because get out of 0.1-0.4 occasionally.

  • PDF