• 제목/요약/키워드: extreme event

검색결과 169건 처리시간 0.025초

Nonlinear runoff during extreme storms in the Seolma-Cheon watershed

  • Kjeldsen, Thomas Rodding;Kim, Hyeonjun;Jang, Cheolhee;Lee, Hyosang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.235-235
    • /
    • 2015
  • This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

  • PDF

폭염발생 기준 설정에 관한 연구 (A Study on Development of the Extreme Heat Standard in Korea)

  • 박종길;정우식;김은별
    • 한국환경과학회지
    • /
    • 제17권6호
    • /
    • pp.657-669
    • /
    • 2008
  • Lately extreme weather event is occurring because of the global warming. Especially disaster due to the extreme heat are increasing but the definition and the standard of the extreme heat is obscure until now. So this study established the extreme heat standard by using the number of daily deaths. As a result, considering the climate of the megalopolis using daily maximum heat index and daily maximum temperature was the best for the standard of the extreme heat. And it showed that extreme heat lasted for 2 days affects the death toll the most. The regional incidence of the extreme heat is highest at August and July, September and June is following.

Exploring Extreme Events(X-event) in the High-Tech Science & Technology Field

  • Sang-Keun Cho;Jong-Hoon Kim;Eui-Chul Shin;Myung-Sook Hong;Jun-Chul Song;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.191-195
    • /
    • 2023
  • An X-event is an event that is difficult to predict and unlikely to occur, but if it occurs, it has a very large ripple effect, such as loss of life, property, territory, and emotional turmoil. Extreme events are unlikely to occur, but they can happen someday, and if they do, they have a great impact on society as a whole, so they must be prepared to minimize the impact and impact. For this purpose, we collected opinions from low-level experts at the Korea Army Research Center for Future & Innovation and the Army College on extreme events that can trigger the near future (10 years) in the field of high-tech science and technology, which is currently developing rapidly after the 4th Industrial Revolution. The researchers intend to synthesize and analyze this data to derive implications and provide a response direction to alleviate the ultra-uncertainty of extreme events and provide a cornerstone for crisis management strategies for the occurrence of serial and simultaneous extreme events.

연속적인 극한호우사상의 발생을 가정한 거대홍수모의 (Mega Flood Simulation Assuming Successive Extreme Rainfall Events)

  • 최창현;한대건;김정욱;정재원;김덕환;김형수
    • 한국습지학회지
    • /
    • 제18권1호
    • /
    • pp.76-83
    • /
    • 2016
  • 최근 연속적인 태풍에 의한 일련의 극한 호우 사상으로 홍수가 발생하였고, 이로 인해 인명과 막대한 재산피해가 발생하였다. 본 연구에서는 연속 호우 사상으로 인해 발생한 극한홍수를 거대홍수라고 정의하고, 일정 시간 간격으로 극한 호우 사상이 연속적으로 발생 될 수 있음을 가정하여 가상의 거대홍수 시나리오를 구성하였다. 최소 무강우 시간 결정(Inter Event Time Definition, IETD)방법을 사용하여 연속적인 강우의 시간 간격을 결정하였으며, IETD에 의해 산정된 시간 간격 안에서 호우 사상을 연속적으로 발생시켜 평창강 유역을 대상으로 거대홍수를 모의하였다. 즉, (1) 기록된 극한 호우 사상의 연속적인 발생 (2) 기왕 자료를 기반으로 빈도해석에 의해 산정된 설계 호우 사상의 연속적인 발생을 가정하여 거대홍수를 모의하였다. 연속 호우 사상으로 인한 거대홍수는 단일 호우 사상으로 인한 일반 홍수에 비해 6~17%의 홍수량이 증가하는 것으로 나타났다. 앞의 호우 사상으로 인한 홍수량에 비해 뒤에 오는 호우로 인한 홍수량의 증가는 많지 않지만, 연속적인 호우는 두 번의 홍수피해를 가져오므로 가상의 거대홍수로 인한 홍수 피해는 매우 클 것으로 판단된다. 따라서 본 연구와 같이 가상의 강우 시나리오를 통해 예상하지 못한 연속적인 홍수 재해와 같은 비상 상황에 대비할 방안을 마련할 필요가 있을 것으로 사료된다.

HAZARD ANALYSIS OF TYPHOON-RELATED EXTERNAL EVENTS USING EXTREME VALUE THEORY

  • KIM, YOCHAN;JANG, SEUNG-CHEOL;LIM, TAE-JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.59-65
    • /
    • 2015
  • Background: After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. Methods: To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. Results: The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. Conclusion: A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.

기후변화에 따른 미래 극한호우사상이 소양강댐 유역의 유량 및 유사량에 미치는 영향 (Potential Impacts of Future Extreme Storm Events on Streamflow and Sediment in Soyang-dam Watershed)

  • 한정호;이동준;강부식;정세웅;장원석;임경재;김종건
    • 한국물환경학회지
    • /
    • 제33권2호
    • /
    • pp.160-169
    • /
    • 2017
  • The objective of this study are to analyze changes in future rainfall patterns in the Soyang-dam watershed according to the RCP 4.5 scenario of climate change. Second objective is to project peak flow and hourly sediment simulated for the future extreme rainfall events using the SWAT model. For these, accuracy of SWAT hourly simulation for the large scale watershed was evaluated in advance. The results of model calibration showed that simulated peak flow matched observation well with acceptable average relative error. The results of future rainfall pattern changes analysis indicated that extreme storm events will become more severe and frequent as climate change progresses. Especially, possibility of occurrence of large scale extreme storm events will be greater on the periods of 2030-2040 and 2050-2060. In addition, as shown in the SWAT hourly simulation for the future extreme storm events, more severe flood and turbid water can happen in the future compared with the most devastating storm event which occurred by the typhoon Ewiniar in 2006 year. Thus, countermeasures against future extreme storm event and turbid water are needed to cope with climate change.

극치강우사상을 포함한 강우빈도분석의 불확실성 분석 (Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events)

  • 김상욱;이길성;박영진
    • 한국수자원학회논문집
    • /
    • 제43권4호
    • /
    • pp.337-351
    • /
    • 2010
  • 극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.

Exploring X-event in the Field of Near-Future Population

  • Sang-Keun Cho;Jun-Woo Kim;Eui-Chul Shin;Myung-Sook Hong;Jun-Chul Song;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.186-190
    • /
    • 2023
  • There are unimaginable possibilities ahead of us. As a result, it is difficult to predict the future, but the prediction itself is not meaningless. This is because it can have the flexibility to cope with contingencies by predicting various possibilities. This study was conducted to explore extreme events (X-event) in the Korean population sector. To this end, in-depth interviews were conducted with experts from the Korea Army Research Center for Future & Innovation and the Army College, and based on this, significant research results were derived that population problems such as population decline and aging can affect various fields such as economy. With this study, we hope that discussions on extreme events (X-event) that can occur in our society will be further activated.

북한강 수계 대규모 탁수사상 발생에 의한 댐 저수지의 탁수 영향 분석 (Analyzing the Effect of an Extreme Turbidity Flow Event on the Dam Reservoirs in North Han River Basin)

  • 박형석;정세웅;정선아
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.282-290
    • /
    • 2017
  • A long-term resuspension of small particles, called persistent turbidity, is one of the most important water quality concerns in the dam reservoirs system located in North Han River. Persistent turbidity may incur aesthetic nuisance and harmful effect on the ecosystem health, in addition to elevated water treatment costs for the drinking water supply to the Seoul metropolitan area. These sufferings have been more intensified as the strength and frequency of rainfall events increase by climate change in the basin. This study was to analyze the effect of an extreme turbidity flow event that occurred in 2006 on the serial reservoirs system (Soyang-Uiam-Cheongpyung-Paldang) in North Han River. The CE-QUAL-W2 model was set up and calibrated for the river and reservoirs system using the field data obtained in 2006 and 2007. The results showed that Soyang Reservoir released turbid water, which was classified as the TSS concentration is greater than 25 mg/L, for 334 days with peak TSS of 264.1 mg/L after the extreme flood event (592.7 mm) occurred between July 10 and 18 of 2006. The turbid water departed from Soyang Reservoir reached at the most downstream Paldang Reservoir after about 20 days and sustained for 41 days, which was validated with water treatment plant data. Since the released water from Soyang Reservoir had low water temperature and high TSS, an underflow formed in the downstream reservoirs and vertically mixed at Paldang Reservoir due to dilution by the sufficient inflow from South Han River.

Meteorological events causing extreme winds in Brazil

  • Loredo-Souza, Acir M.
    • Wind and Structures
    • /
    • 제15권2호
    • /
    • pp.177-188
    • /
    • 2012
  • The meteorological events that cause most strong winds in Brazil are extra-tropical cyclones, downbursts and tornadoes. However, one hurricane formed off the coastline of southern Brazil in 2005, a tropical storm formed in 2010 and there are predictions that others may form again. Events such as those described in the paper and which have occurred before 1987, generate data for the wind map presented in the Brazilian wind loading code NBR-6123. This wind map presents the reference wind speeds based on 3-second gust wind speed at 10 m height in open terrain, with 50-year return period, varying from 30 m/s (north half of country) to 50 m/s (extreme south). There is not a separation of the type of climatological event which generated each registered velocity. Therefore, a thunderstorm (TS), an extra-tropical pressure system (EPS) or even a tropical cyclone (TC) are treated the same and its resulting velocities absorbed without differentiation. Since the flow fields generated by each type of meteorological event may be distinct, the indiscriminate combination of the highest wind velocities with aerodynamic coefficients from boundary layer wind tunnels may lead to erroneous loading in buildings.