• Title/Summary/Keyword: extractive bioconversion

Search Result 2, Processing Time 0.016 seconds

Partitioning of Lactobacillus helveticus Cells and Lactic Acid in Aqueous PEI/HEC Two-Phase Systems. (수용성 이상계에서의 젖산과 Lactobacillus helveticus세포의 분배특성)

  • 안한군;권윤중
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.55-60
    • /
    • 1998
  • For an ideal extractive bioconversion in aqueous two-phase systems, the product has to be preferentially partitioned into the phase opposite to the one in which the biocatalyst is located. Partitioning behaviors of Lactobacillus helveticus IAM 11090 and lactic acid in aqueous two-phase systems composed a polycation, poly(ethylenimine) (PEI), and an uncharged polymer (hydroxyethyl)cellulose (HEC) were investigated. L. helveticus cells were preferentially partitioned to the HEC-rich top phase while about 85% of lactic acid was partitioned to the PEI-rich bottom phase. These results indicate that extraction of charged, low molecular weight products in an aqueous two-phase systems can be promoted by using an oppositely charged polymer as one of the phase-forming polymer. By the ideal partitioning of the cells and lactic acid, an aqueous PEI/HEC two-phase system can be used as a potential system for the extractive lactic acid fermentation of cheese whey.

  • PDF

Ethanol Production from Artificial Domestic Household Waste Solubilized by Steam Explosion

  • Nakamura, Yoshitoshi;Sawada, Tatsuro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.205-209
    • /
    • 2003
  • Solubilization of domestic household waste through Steam explosion with Subsequent ethanol production by the microbial saccharifitation and fermentation of the exploded product was studied. The effects of steam explosion on the changes of the density, viscosity, pH, and amounts of extractive components in artificial household waste were determined. The composition of artificial waste used was similar to leftover waste discharged from a typical home in Japan. Consecutive microbial saccharification and fermentation, and simultaneous microbial saccharification and fermentation of the Steam-exploded product were attempted using Aspergillus awamori, Trichoderma viride, and Saccharomyces cerevisiae; the ethanol yields of each process were compared. The highest ethanol yield was obtained with simultaneous microbial saccharification and fermentation of exploded product at a steam pressure of 2 MPa and a steaming time of 3 min.