• Title/Summary/Keyword: extraction rate constant

Search Result 71, Processing Time 0.019 seconds

Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information (개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법)

  • Jeong, Jin-Seong;Kim, Hyun-Tae;Jang, Young-Min;Cho, Sang-Bok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.96-110
    • /
    • 2017
  • Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.