• Title/Summary/Keyword: extraction method and part

Search Result 387, Processing Time 0.026 seconds

A Conceptual Schema Integration through Extraction of Common Similar Subschemas : An Case Study of Multidatabase System (공통 유사 서브스키마 추출을 통한 개념적 스키마 통합 : 다중 데이터베이스 시스템 적용사례)

  • Koh, Jae-jin;Lee, Won-Jo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.775-782
    • /
    • 2004
  • Recently, most of global enterprises have geographically distributed organization, thus have distributed information systems which have distributed database systems. So, it is difficult for these systems to provide common views for the application programs of end users. One of solutions to solve these difficulties is an MDBS(Multidatabase System) A method to effectively implement MDBS is a schema integration. This paper proposes a methodology for a schema integration through extraction of common similar subschemas Our methodology is consisted of 5 phases : affinity analysis, extraction of similar subschemas, decision of imtegration order, resolution of semantic conflict, and schema integration. To verify the usability of our methodology, a case study is implemented with an object of MDBS. At a result, our approach can effectively be applied to the extraction of common similar subschemas and schema integration.

Chessboard and Pieces Detection for Janggi Chess Playing Robot

  • Nhat, Vo Quang;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2013
  • Vision system is an indispensable part of constructing the chess-playing robot. Chessboard detection and pieces localization in the captured image of robot's camera are important steps for processes followed such as pieces recognition, move calculation, and robot controlling. We present a method for detecting the Janggi chessboard and pieces based on the edge and color feature. Hough transform combined with line extraction is used for segmenting the chessboard and warping it to form the rectangle shape in order to detect and interpolate the lines of chessboard. Then we detect the existence of pieces and their side by applying the saliency map and checking the color distribution at piece locations. While other methods either work only with the empty chessboard or do not care about the piece existence, our method could detect sufficiently side and position of pieces as well as lines of the chessboard even if the occlusion happens.

A New Temporal Filtering Method for Improved Automatic Lipreading (향상된 자동 독순을 위한 새로운 시간영역 필터링 기법)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One of the important issues in automatic lipreading is to define and extract salient features from the recorded images. In this paper, we propose a feature extraction method by using a new filtering technique for obtaining improved recognition performance. The proposed method eliminates frequency components which are too slow or too fast compared to the relevant speech information by applying a band-pass filter to the temporal trajectory of each pixel in the images containing the lip region and, then, features are extracted by principal component analysis. We show that the proposed method produces improved performance in both clean and visually noisy conditions via speaker-independent recognition experiments.

Comparison of Segmentation based on Threshold and KCMeans Method

  • R.Spurgen Ratheash;M.Mohmed Sathik
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.93-96
    • /
    • 2024
  • The segmentation, detection, and extraction of infected tumour area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated many algorithm methods are available in medical imaging amongst them the Threshold technique brain tumour segmentation process gives an accurate result than other methods for MR images. The proposed method compare with the K-means clustering methods, it gives a cluster of images. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, process time and similarity of the segmented part. The experimental results achieved more accuracy, less running time and high resolution.

Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed (풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측)

  • Kim, Yeong-ju;Jeong, Min-a;Son, Nam-rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1085-1092
    • /
    • 2017
  • In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.

Sasang Constitution Classification System Using Face Morphologic Relation Analysis (얼굴의 형태학적 관계 분석에 의한 사상 체질 분류 시스템)

  • Cho, Dong-Uk;Kim, Bong-Hyun;Lee, Se-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.153-162
    • /
    • 2007
  • Sasang medicine is peculiar medicine that constitution of a human classify four types and differ treatment method by physical constitution. In this way the most important thing is very difficult problem that classification of Sasang constitution and discriminate correctly. Therefore, in this paper targets diagnosis medical appliances development of hybrid form that can behave constitution classification and sees among for this paper to propose about method to grasp characteristic that is morphology about eye, nose, ear and mouth be based on appearance and manner of speaking. In this paper, classified and verified this for Sasang constitution through the QSCC II program at 1 step and present method that more exactly and conveniently analyzing measure each physical constitution feature by survey about eye, nose, ear and mouth at 2 steps. Also, extraction and analyze and verified main area of physical constitution classification based on front face and side face at 3 steps. Such propose method to extraction the principal face region based on face color from front face and side face for correct physical constitution classification diagnosis appliance development through experiment consideration and verification process.

Research on analysis of articleable advertisements and design of extraction method for articleable advertisements using deep learning

  • Seoksoo Kim;Jae-Young Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.13-22
    • /
    • 2024
  • There is a need for and positive aspects of article-based advertising, but as exaggerated and disguised information is delivered due to some indiscriminate 'article-based advertisements', readers have difficulty distinguishing between general articles and article-based advertisements, leading to a lot of misinterpretation and confusion of information. is doing Since readers will continue to acquire new information and apply this information at the right time and place to bring a lot of value, it is judged to be even more important to distinguish between accurate general articles and article-like advertisements. Therefore, as differentiated information between general articles and article-like advertisements is needed, as part of this, for readers who have difficulty identifying accurate information due to such indiscriminate article-like advertisements in Internet newspapers, this paper introduces IT and AI technologies. We attempted to present a method that can be solved in terms of a system that incorporates, and this method was designed to extract articleable advertisements using a knowledge-based natural language processing method that finds and refines advertising keywords and deep learning technology.

Oil Pipeline Weld Defect Identification System Based on Convolutional Neural Network

  • Shang, Jiaze;An, Weipeng;Liu, Yu;Han, Bang;Guo, Yaodan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1086-1103
    • /
    • 2020
  • The automatic identification and classification of image-based weld defects is a difficult task due to the complex texture of the X-ray images of the weld defect. Several depth learning methods for automatically identifying welds were proposed and tested. In this work, four different depth convolutional neural networks were evaluated and compared on the 1631 image set. The concavity, undercut, bar defects, circular defects, unfused defects and incomplete penetration in the weld image 6 different types of defects are classified. Another contribution of this paper is to train a CNN model "RayNet" for the dataset from scratch. In the experiment part, the parameters of convolution operation are compared and analyzed, in which the experimental part performs a comparative analysis of various parameters in the convolution operation, compares the size of the input image, gives the classification results for each defect, and finally shows the partial feature map during feature extraction with the classification accuracy reaching 96.5%, which is 6.6% higher than the classification accuracy of other existing fine-tuned models, and even improves the classification accuracy compared with the traditional image processing methods, and also proves that the model trained from scratch also has a good performance on small-scale data sets. Our proposed method can assist the evaluators in classifying pipeline welding defects.

Detection of Calibration Patterns for Camera Calibration with Irregular Lighting and Complicated Backgrounds

  • Kang, Dong-Joong;Ha, Jong-Eun;Jeong, Mun-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.746-754
    • /
    • 2008
  • This paper proposes a method to detect calibration patterns for accurate camera calibration under complicated backgrounds and uneven lighting conditions of industrial fields. Required to measure object dimensions, the preprocessing of camera calibration must be able to extract calibration points from a calibration pattern. However, industrial fields for visual inspection rarely provide the proper lighting conditions for camera calibration of a measurement system. In this paper, a probabilistic criterion is proposed to detect a local set of calibration points, which would guide the extraction of other calibration points in a cluttered background under irregular lighting conditions. If only a local part of the calibration pattern can be seen, input data can be extracted for camera calibration. In an experiment using real images, we verified that the method can be applied to camera calibration for poor quality images obtained under uneven illumination and cluttered background.

MPEG-7 Homogeneous Texture Descriptor

  • Ro, Yong-Man;Kim, Mun-Churl;Kang, Ho-Kyung;Manjunath, B.S.;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.23 no.2
    • /
    • pp.41-51
    • /
    • 2001
  • MPEG-7 standardization work has started with the aims of providing fundamental tools for describing multimedia contents. MPEG-7 defines the syntax and semantics of descriptors and description schemes so that they may be used as fundamental tools for multimedia content description. In this paper, we introduce a texture based image description and retrieval method, which is adopted as the homogeneous texture descriptor in the visual part of the MPEG-7 final committee draft. The current MPEG-7 homogeneous texture descriptor consists of the mean, the standard deviation value of an image, energy, and energy deviation values of Fourier transform of the image. These are extracted from partitioned frequency channels based on the human visual system (HVS). For reliable extraction of the texture descriptor, Radon transformation is employed. This is suitable for HVS behavior. We also introduce various matching methods; for example, intensity-invariant, rotation-invariant and/or scale-invariant matching. This technique retrieves relevant texture images when the user gives a querying texture image. In order to show the promising performance of the texture descriptor, we take the experimental results with the MPEG-7 test sets. Experimental results show that the MPEG-7 texture descriptor gives an efficient and effective retrieval rate. Furthermore, it gives fast feature extraction time for constructing the texture descriptor.

  • PDF