• Title/Summary/Keyword: extracted oil from spent coffee grounds

Search Result 4, Processing Time 0.02 seconds

Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds

  • Kim, Yeong Su;Woo, Duk Gam;Kim, Tae Han
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.470-478
    • /
    • 2020
  • Spent coffee grounds (SCG), the residue after brewing coffee beverage, is a promising biodiesel feedstock due to its high oil contents (15-20%). However, SCG should be pretreated to reduce the high free fatty acid content, which hampers transesterification reaction. To overcome this, we explored a direct transesterification reaction of SCG using ultrasound irradiation and identified the optimal sonication parameters. A high fatty acid methyl ester (FAME) content, up to 97.2%, could be achieved with ultrasound amplitude of 99.2 ㎛, irradiation time of 10 min, and methanol to oil ratio of 7:1 in the presence of potassium hydroxide concentration of 1.25 wt.%. In addition, we demonstrated that ultrasound irradiation is an efficient method to produce biodiesel from untreated SCG in a short time with less energy than the conventional mechanical stirring method. The physical and chemical properties of the SCG biodiesel met the requirements for an alternative fuel to the current commercial biodiesel.

Biosynthesis of Medium-chain-length Polyhydroxylalkanoate Using Extracted Oil from Spent Coffee Grounds (커피 찌꺼기 오일을 이용한 medium-chain-length Polyhydroxylalkanoate생합성)

  • Hui-Yeon Kwon;Jong-Sik Kim;Chung-Wook Chung
    • Journal of Life Science
    • /
    • v.34 no.10
    • /
    • pp.682-690
    • /
    • 2024
  • This study aimed to produce medium-chain-length polyhydroxyalkanoates (mcl-PHA) using oil extracted from spent coffee grounds (SCG) as a carbon source. The highest oil yields, 14.40%(w/w) and 14.49%(w/w), were achieved with an extraction time of 2 hr and an SCG/n-hexane ratio of 15:1. The fatty acid composition of the extracted SCG oil (EOC) primarily consisted of linoleic acid (45.08%), palmitic acid (35.56%), oleic acid (8.62%), and stearic acid (7.62%). Pseudomonas sp. HY61, isolated from soil, was used to biosynthesize mcl-PHA composed of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate using EOC. Under optimal flask conditions, the highest cell growth and mcl-PHA accumulation were observed with 5 g/l EOC, 72 hr, with NH4Cl as the nitrogen source, at pH 7, 25℃, and a C/N ratio of 15:1. Batch fermentation resulted in a dry cell weight (DCW) of 0.92 g/l and mcl-PHA of 0.17 g/l after 72 hr. In contrast, fed-batch fermentation, with additional supplementation of EOC and NH4Cl at 18, 30, and 42 hr, increased the DCW to 2.85 g/l and mcl-PHA accumulation to 0.67 g/l, approximately three times higher than batch fermentation. Gas chromatography confirmed that the mcl-PHA structure was consistent across both fermentation modes. The synthesized mcl-PHA had higher molecular weight and thermal decomposition temperatures compared to other mcl-PHA, suggesting its potential applications in packaging and biomedical fields. This study offers an economical approach for mcl-PHA production using waste EOC and Pseudomonas sp. HY61.

Optimization of Biodiesel Synthesis Process Using Spent Coffee Grounds (커피가루를 이용한 바이오디젤의 제조공정 최적화)

  • La, Joo-Hee;Lee, Seung-Bum;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.72-76
    • /
    • 2011
  • In this study, we investigated the characteristics of biodiesel using the waste coffee oil which was extracted by waste coffee grounds. We tried to deduce the optimum conditions by defining the operating variables, such as mole ratio between methanol and coffee oil (6~18) and the reaction temperature ($45{\sim}60^{\circ}C$) in the biodiesel production processes. The performance was evaluated in terms of yields, contents of fatty acid methyl ester (FAME), viscosities, and heating values. The optimum reaction temperature was $55^{\circ}C$. Also, the best biodiesel was produced at the mole ratio between methanol and coffee oil of 12. The highest heating value of the produced biodiesel made from coffee oil was 39.0~39.4 MJ/kg, which satisfies the general standard for the biodiesel energy density, 39.3~39.8 MJ/kg.

Development of Sustainable Packaging Materials Using Coffee Silverskin and Spent Coffee Grounds: A Comprehensive Review (커피 은피와 커피찌꺼기를 활용한 지속가능한 포장소재 개발을 위한 연구동향)

  • Jihyeon Hwang;Dowan Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • As awareness of environmental issues continues to grow, there is an escalating demand for recycling and repurposing byproducts of agricultural and food production processes and their conversion to high-value products. Coffee is the most widely consumed beverage globally; during coffee beverage processing and consumption, byproducts such as coffee silverskin (CS), spent coffee grounds (SCGs), and oil are generated. Despite containing beneficial materials such as cellulose, hemicellulose, lignin, lipids, and bioactive substances, these byproducts are typically discarded in landfills or incinerated. The utilization of CS, SCGs, and oil in the development of packaging materials holds significant potentials toward the realization of a sustainable society. To this end, considerable research efforts have been dedicated to the development of high-value materials derived from coffee byproducts, including functional fillers, polymer composites, and biodegradable polymers. Notably, CS and SCGs have been employed as functional fillers in polymer composites. Additionally, lipids extracted from SCGs have been used as plasticizers for polymers and cultured with microorganisms to produce biodegradable polymers. This review focuses on the research and development of polymer/CS and polymer/SCG composites as well as cellulose extraction and utilization from CS and SCGs and its applications, oil extraction from SCGs, and cultivation with microorganisms using extracted oil for polyhydroxyalkanoates(PHA) production.