• Title/Summary/Keyword: extracted at $40^\circ{C}$

Search Result 322, Processing Time 0.02 seconds

Predicting In Sacco Rumen Degradation Kinetics of Raw and Dry Roasted Faba Beans (Vicia faba) and Lupin Seeds (Lupinus albus) by Laboratory Techniques

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1377-1387
    • /
    • 2000
  • Two laboratory techniques: (1) an in vitro method with two procedures for measuring protein degradabilities and (2) an in vitro method with three procedures for measuring protein solubility, were investigated to determine which laboratory techniques could most accurately predict the quantity of rumen protein degradation kinetics of legume seeds after dry roasting under various conditions, in terms of (1) rumen protein disappearance ($D_j$, where j=0, 2, 4, 8, 12, 24 and 48 h incubation), (2) rumen protein effective degradability (EDCP), (3) the parameters describing rumen degradation characteristics (the soluble fraction: S, the potentially degradable fraction: D, undegradable fraction: U, lag time: T0 and the degradation rate: Kd) and (4) rumen bypass protein (BCP), which were determined by the method accepted internationally at present, in sacco nylon bag technique using the standardized Dutch method. Feeds evaluated were the raw and dry roasted whole faba (Vicia faba) beans (WFB) and whole lupin (Lupinus albus) seeds (WLS), each was dry roasted under various conditions (at 110, 130 or $150^{\circ}C$ for 15, 30 or 45 min). In vitro protein degradability ($D_1$_Auf and $D_{24}$_Auf) were determined using the modified Aufr re method by enzymatic hydrolysis for 1 h and 24 h using a protease extracted from Streptomyces griseus in a borate-phosphate buffer. In vitro protein solubility ($bf_1$_S, $bf_2$_S, $bf_3$_S) was measured in a borate-phosphate buffer with three different procedures. Results from laboratory techniques (in vitro) were correlated and linearly regressed with in sacco results. Of the three procedures of in vitro protein solubility evaluated, none of them could predict in sacco results with good precision. The highest Pearson correlation coefficient ($R^2$) was less than 0.50. Of two procedures of in vitro protein degradability studied, the $D_1$_Auf values were closely correlated with in sacco parameters: Kd, EDCP and %BCP with high R' values: 0.82, 0.85 and 0.85, respectively, and closely correlated with in sacco $D_j$ at 2, 4, 8 and 12 h rumen incubation with high $R^2$ values: 0.83, 0.91, 0.93 and 0.83, respectively. The $D_{24}$_Auf values could not predict in sacco results. The highest $R^2$ value was less then 0.40. These results indicated that in vitro protein solubility measured in borate-phosphate failed to identify differences in the rate and extent of protein degradation of legume seeds after dry roasting under various conditions and thus should not be used to predict rumen degradation, particularly for heat processed feedstuffs. But in vitro protein degradability using the modified Aufr re method by enzymatic hydrolysis for 1 h or possibly an intermediate time (>1 h and <24 h) is a promising laboratory procedure to detect effectiveness of dry roasting legume seeds on rumen protein degradation characteristics and could be used as a simple laboratory method to predict the rate and extent of protein degradation in the rumen in sacco with high accuracy. The equations to predict EDCP, Kd and BCP of dry roasted legume seeds (WLS and WFB) under various conditions are as follow: For both: EDCP (%)=-1.37+1.06*$D_1$_Auf ($R^2=0.85$, p<0.01). For both: Kd (%/h)=-21.81+0.49*$D_1$_Auf ($R^2=0.82$, p<0.01). For both: %BCP=103.37-1.07*$D_1$_Auf ($R^2=0.85$, p<0.01).

Evaluation of time-dependent antimicrobial effect of sodium dichloroisocyanurate (NaDCC) on Enterococcus faecalis in the root canal (이염화이소시아뉼산나트륨 제재의 근관 내 사용 시 시간에 따른 E. faecalis에 대한 항균성 평가)

  • Kim, Hye-Jeong;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.121-129
    • /
    • 2007
  • The purpose of this study was to assess the antibacterial effect of sodium dichloroisocyanurate (NaDCC), sodium hypochlorite (NaOCl), and chlorhexidine (CHX) on Enterococcus faecalis and to evaluate and to compare the time-dependant antimicrobial effect of NaDCC with NaOCl and CHX in the root canal in vitro before and after instrumentation. Extracted Human single teeth were prepared by serial instrumentation technique. The samples were autoclaved and contaminated for 3 days with E. faecalis monocultures. The teeth were then divided into 4 groups Each group was irrigated and inserted with 2% NaOCl, 2% NaDCC, 2% CHX and steri)ized saline. After 6, 12, 24, 72h, and 1 week incubation, sterilized paper point was inserted into the root canal. Paper points containing root canal contents were then placed on the agar plate. And then each root cana) was prepared with #4 and #5 GG (Gates-Glidden) drill. The debris were collected in the sterilized microtube and the plates were incubated at $37^{\circ}C$ in an increased $CO_2$ atmosphere. After 24h incubation the growth of bacteria around the paper points were measured. NaOCl and NaDCC solution shows similar antimicrobial effect for E. faecalis at 6, 12, 24, 72h and 1 week. In centrol group, irrigated with sterilized saline, no antimicrobial effect was observed. The results are in agreement with other investigators, who have shown the bactericidal property and possibility of NaDCC as a root canal irrigation solution. Thus it seems that NaDCC solutions can be clinically applied into the root canal within 1 week after dilution.