• Title/Summary/Keyword: extracellular fluid(ECW)

Search Result 6, Processing Time 0.02 seconds

Analysis of difference in body fluid composition and dietary intake between Korean adults with and without type 2 diabetes mellitus (한국성인의 제2형 당뇨병 유무에 따른 체액 조성 차이 및 영양소 섭취량 분석)

  • Yu-Gyeong Kim;Ha-Neul Choi ;Jung-Eun Yim
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.377-390
    • /
    • 2023
  • Purpose: Diabetes mellitus (DM) causes body fluid imbalance because of hyperglycemia, but there is a lack of research on the relationship between DM and body fluid imbalance in the Korean population. This study compared the differences in body fluid composition and dietary intake between individuals with type 2 DM (T2DM) and a normal control (NC) group without the disease. Methods: In this study, 36 subjects with T2DM and 21 without diabetes were divided into the T2DM and NC groups. The subjects were divided into four subgroups to assess differences in body fluid volume according to sex: men T2DM group (n = 24), men NC group (n = 9), women T2DM group (n = 12), and women NC group (n = 12). The body fluid composition was measured using bioelectrical impedance analysis, including intracellular water (ICW), extracellular water (ECW), total body water (TBW), ECW/ICW, and ECW/TBW. Nutrient intake was evaluated using their dietary records. Results: The results showed that the ECW/ICW and the ECW/TBW were significantly higher in the T2DM group compared to the NC group. Both men and women in the T2DM group showed significantly higher ECW/ICW and ECW/TBW than the respective NC group. The T2DM group had a higher carbohydrate, dietary fiber, vitamin A, vitamin C, sodium, and potassium intake per 1,000 kcal and lower total daily energy, fat, and cholesterol intake per 1,000 kcal than the NC group. Conclusion: These results suggest a positive association between T2DM and body fluid imbalance. This study can be used widely as basic data for the evaluation and diagnosis of diabetic complications in the future.

Assessment of Body Fluid Alteration Using Bioelectrical Impedance in Stroke Patients with Hemiplegia Caused by Cerebral Hemorrhage and Cerebral Infarction

  • Shin, Yong Il;Kim, Gun Ho;Hwang, Young Jun;Baik, Seung Wan;Kim, Jae Hyung;Jeon, Gye Rok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.160-167
    • /
    • 2017
  • Many stroke patients undergoing rehabilitation therapy require a quantitative indicator for the evaluation of body composition in paretic and non-paretic regions. In this study, the body fluid alteration in the paretic and non-paretic regions of stroke patients with hemiplegia caused by cerebral hemorrhage and cerebral infarction was analyzed using bioelectrical impedance analysis (BIA). Alterations in body fluids were investigated to assess the physical status of the paretic and non-paretic regions of 20 stroke patients with hemiplegia caused by cerebral hemorrhage (7 patients) and cerebral infarction (13 patients). Extracellular water (ECW), intracellular water (ICW), ICW/ECW, total body water (TBW), ECW/TBW, and TBW/fat-free mass were utilized to evaluate the functional status of the paretic and non-paretic regions. Compared with the non-paretic region, the paretic region had high ECW and low ICW. Due to the loss of motor function and nutritional imbalance caused by the stroke, the amount of fat increased while the muscle quantity and quality significantly decreased in the paretic region. Thus, BIA can be a useful tool for quantitatively assessing paretic and non-paretic regions in stroke patients with hemiplegia.

Relative Association of Overhydration and Muscle Wasting with Mortality in Hemodialysis Patients: Assessment by Bioelectrical Impedance Analysis (혈액투석 환자에서 Bioelectrical Impedance Analysis를 활용하여 측정한 과수분량과 근육량 감소와 사망률의 상관관계)

  • Kim, Eunju;Seo, Sang Oh;Choi, Yu Bum;Lee, Mi Jung;Lee, Jeong Eun;Kim, Hyung Jong
    • The Korean Journal of Medicine
    • /
    • v.93 no.6
    • /
    • pp.548-555
    • /
    • 2018
  • Background/Aims: Assessment of fluid status in hemodialysis patents is very important. Overhydration in hemodialysis is associated with generalized edema, cardiovascular complications, and hypertension. The aim of this study was to determine the factors correlated with mortality of hemodialysis patients, assessing body muscle mass and fluid status using bioelectrical impedance analysis (BIA). Methods: This study enrolled 93 patients who underwent hemodialysis between January 2010 and May 2015 at CHA Bundang Medical Center. Medical records of enrollees up to June 2017 were reviewed retrospectively. These included laboratory results (serum albumin, C-reactive protein [CRP], lipid profile, etc.) and BIA data (extracellular water, intracellular water, total body water, soft lean mass, fat free mass, skeletal muscle mass, etc.). Results: Eleven of 93 patients had expired by May 2017. Among the surviving subjects, mean age was younger, CRP levels were lower, albumin levels were higher, and extracellular water/total body water (ECW/TBW) ratios were lower than in the expired patient group. Kaplan-Meier survival analysis revealed that overhydration (ECW/TBW > 0.4) was associated with higher mortality. Conclusions: In hemodialysis patients, overhydration is an important factor in mortality, and BIA could be a reliable modality in its assessment. We suggest that, for hemodialysis patients, overhydration is more of a risk factor for mortality than is muscle wasting.

A PREDICTION OF BODY WATER COMPARTMENTS OF GROWING CATTLE IN VIVO

  • Sekine, J.;Fujita, K.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 1992
  • Body water compartments in vivo were determined in Holstein cattle with age ranging from 5 to 521 days to obtain an equation to estimate volumes of body water. Live weight ranged from 47 to 480 kg. Compartments were determined as antipyrine space for total body water (TBW), thiocyanate space for extracellular water (ECW) and Evans blue dye space for plasma water (PW). Body water compartments expressed as a percentage of live weight decreased as age in days increased and significantly correlated with age in days. Regression analyses revealed that prediction equations had low accuracy. Regression equations of body water compartments on live weight (WT, kg) were useful for the prediction of body fluid with a high accuracy. Live weight significantly regressed on age in days (Day), which was inferred to be utilized for estimation of standardized live weight in case animals were emaciated by certain causes such as severe diarrhea or dehydration. In conclusion, following equations were presented to estimate body water compartments of cattle in vivo : TBW in liters = $0.556({\pm}0.007)WT+10$, r = 0.993, $SE{\pm}0.7$ ECW in liters = $0.321({\pm}0.008)WT+10$, r = 0.978, $SE{\pm}0.8$ PW in liters = $0.0502({\pm}0.0012)WT+1.6$, r = 0.0983, $SE{\pm}0.1$ WT (kg) = $0.772({\pm}0.018)Day+24$, r = 0.982, $SE{\pm}2.3$.

Body Composition Factor Comparisons of the Intracellular Fluid(ICW), Extracellular Fluid(ECW) and Cell Membrane at Acupuncture Points and Non-Acupuncture Points by Inducing Multiple Ionic Changes (생체이온 변화 유발 후 경혈과 비경혈에서의 생체 구조 성분 분석 및 비교를 통한 경혈 특이성 고찰)

  • Kim, Soo-Byeong;Chung, Kyung-Yul;Jeon, Mi-Seon;Shin, Tae-Min;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.31 no.2
    • /
    • pp.66-78
    • /
    • 2014
  • Objectives : The specificity of acupuncture point has been a highly controversial subject. Existing researches said that ion-distribution differences are observed on the acupuncture point. This study was conducted under the assumption that multiple ionic changes induced by muscle fatigue would be different between the acupuncture point with non-acupuncture point. Methods : To induce the identical fatigue, twenty subjects performed the knee extension/flexion exercise using the Biodex System 3. ST32 and ST33 as well as adjacent non-acupuncture points were selected. We measured blood lactate and analyzed the median frequency(MF) and peak torque. To obtain the information on the extracellular fluid(ECW), intracellular fluid(ICW) and cell membrane indirectly, we used the multi-frequency bioelectrical impedance analysis(MF-BIA) method. Results : MF, peak torque and blood lactate level of all measurement sites were gradually returned to normal. Re resistance of ST32 had a stronger response, but a non-acupuncture point adjacent to ST33 had a larger response up to 20 minutes post exercise. Ri resistances were similar for both acupoints and non-acupoints. The $C_m$ capacitance of ST32 had a stronger response after inducing fatigue, but ST33 had a smaller response than a non-acupuncture point adjacent to it. Conclusions : In comparison with before and after inducing fatigue, the specificity of acupuncture points was not clearly observed. Hence, we concluded that the body composition factors extraction method had the limitation as a method of finding the specificity of acupuncture points by inducing fatigue.

Body composition and hemodynamic changes in patients with special needs

  • Tsukamoto, Masanori;Hitosugi, Takashi;Esaki, Kanako;Yokoyama, Takeshi
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.3
    • /
    • pp.193-197
    • /
    • 2016
  • Background: Some patients with special needs exhibit intellectual disability, including deficits in cognitive skills and decreased quality of life. The purpose of this study was to retrospectively compare changes in body composition and hemodynamics during general anesthesia in patients with and without special needs. Methods: The backgrounds of patients who underwent oral maxillofacial surgery under general anesthesia were recorded from medical records. Intracellular water (ICW), extracellular water (ECW), stroke volume variation (SVV), and heart rate (HR) were recorded for 3 h after the start of anesthesia. Categorical data were compared using an unpaired t-test, and a P-value of less than 0.05 was regarded as significant. Numerical data were compared using the Bonferroni correction, and a P-value of less than 0.0125 was regarded as significant. Results: A total of 21 patients were included in the study: 10 patients without special needs (non-S-group) and 11 patients with special needs (S-group). There were no significant differences in patients' backgrounds, except with regard to height (P = 0.03). In both groups, ICW and ECW were maintained, although they were lower in the S-group compared to the non-S-group. SVV was maintained in both groups, although it was higher in the S-group than the non-S-group. HR was significantly lower in the S-group 1 h after induction of anesthesia (P < 0.003). Conclusions: Changes in hemodynamics due to body fluid imbalance should be monitored during general anesthesia, especially for patients with special needs.