• 제목/요약/키워드: external strengthening

검색결과 305건 처리시간 0.031초

태권도 경기력 및 운동수행능력과 PNF운동 (PNF Exercise, the Athletic Performances and the Ability of Exercise Capacity in Taekwondo)

  • 허준호
    • PNF and Movement
    • /
    • 제9권2호
    • /
    • pp.21-27
    • /
    • 2011
  • Purpose : The purpose of this study was to investigate PNF exercise, the athletic performances and the ability of exercise capacity in Taekwondo. Methods : This is a literature study with books and articles, seminar note and books for PNF international course. Results : The PNF exercise was efficient at improving flexibility and muscle strengthening in Taekwondo athletes. Kinematic characters of Yupchagi and Dollyuchagi in Taekwondo were analogous to Lower extremity Flexion-Abduction-Internal Rotation patterns in PNF, and the kinematic character of Apchagi was to analogous to Lower extremity Flexion-Adduction-External Rotation pattern in PNF. Movements of Upper extremities and Lower extremities during kicking were similar to PNF patterns. The PNF is efficient at improving athletic performances and the ability of exercise capacity in Taekwondo. Conclusion : The result of this study showed that PNF patterns and kicking that is one of the basic movement in Taekwondo have many similarities. With that PNF patterns was the training methods to improve flexibility and muscle strengthening, PNF patterns are considered to improve athletic performances and the ability of exercise capacity in Taekwondo.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Hosseinnejad, Hossein;Lotfollahi-Yaghin, Mohammad Ali;Hosseinzadeh, Yousef;Maleki, Ahmad
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.221-229
    • /
    • 2022
  • The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Comparative Study of Infraspinatus and Posterior Deltoid Muscle Activation According to Angle of External Rotation of Glenohumeral Joint

  • Yang, Dongseok;Choi, Wonho
    • 국제물리치료학회지
    • /
    • 제11권2호
    • /
    • pp.2071-2076
    • /
    • 2020
  • Background: Based on the understanding of the muscle activation relationship between the infraspinatus and posterior deltoid muscles to according to the angle of motion during external rotation on glenohumeral joint, effective shoulder joint strengthening exercise for the prevention and rehabilitation of shoulder injury due to muscle strength imbalance can be performed by achieving the ideal muscle activity ratio during exercise. Objectives: To compare and analyze the muscle activation changes and activity ratio of the infraspinatus and posterior deltoid muscles according to the glenohumeral external rotation angle. Design: Quasi-randomized trial. Methods: The study included 48 healthy male and female adults who provided informed consent for participation in the study. All the subjects performed isometric glenohumeral external rotation by setting the angle of motion to 30°, 45°, and 60° using a 5 kg resistance weight pulley. On surface electromyography, the differences in muscle activation and activity ratio between the infraspinatus and posterior deltoid muscles were investigated. Results: A significant difference in muscle activation was found in the comparison between the infraspinatus and posterior deltoid muscles according to the glenohumeral external rotation angle (P<.05). The muscle activation levels of the infraspinatus and posterior deltoid muscles were highest at the external rotation angles of 30° and 60°, respectively. The muscle activity ratio between the infraspinatus and posterior deltoid muscles also showed a significant difference (P<.05) and was highest at the shoulder external rotation angle of 30°. Conclusion: The findings of this study suggest that muscle activity is the highest at the shoulder external rotation angle of 30° in healthy individuals.

고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(2) (An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(2))

  • 신경재;곽명근;배규웅;오영석;문정호
    • 콘크리트학회논문집
    • /
    • 제18권5호
    • /
    • pp.603-610
    • /
    • 2006
  • 철근콘크리트 구조물의 외부 비부착 보강방식은 다른 보강기법과 비교하여 설치가 빠르며 간단하다는 장점을 가진다. 고장력 인장봉을 사용한 보강방식은 강판 또는 탄소섬유쉬트 부착공법과는 달리 설치를 위한 콘크리트 표면가공이 필요치 않고 환경적인 조건에 영향을 받지 않는다. 본 연구를 통해 개발된 보강방식은 정착핀 또는 정착판을 통하여 보의 단부에서 고장력 인장봉과 RC보를 연결하는 보강방식이다. 여기에 편심기를 통하여 외부보강 강봉이 RC보의 곡률에 대응하도록 하였다. 본 논문에서는 보강된 RC보에 관한 총 10개의 실험체 제작하여 실험을 실시하였다. 실험의 주요 변수는 보강재료의 직경, 강봉 보강의 깊이와 개수이다. 본 논문에서는 본 연구를 통하여 개발된 보강공법으로 보강된 RC보의 구조적 거동을 기술하였으며, 보강된 RC보의 실험 결과를 무보강 실험체와 비교하였다. 실험결과 제안된 보강방법은 무보강 실험체와 비교하여 매우 우수한 강도 증진효과를 나타내었고 편심장치의 사용은 효율성을 향상시켰다. 또한, 두개의 편심기를 사용한 실험체는 1개의 편심장치를 사용한 실험체에 비해 모멘트 성능이 우수하였고, 외부보강 강봉은 보의 휨강도 뿐만 아니라 전단강도를 향상시키는 결과도 가져왔다.

유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가 (Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test)

  • 허무원;천영수;황재승;이강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.23-34
    • /
    • 2015
  • 최근 새로운 3차원 와이어 다공질 형태의 카고메 트러스 이력형 제진장치가 개발되어, 건축물의 내진성능 개선을 위한 제진장치로서의 적용가능성이 재료실험을 통하여 검증되었다. 본 연구에서는 카고메 트러스 이력형 제진장치를 RC 라멘조 공동주택에 외부접합 한 새로운제진구조시스템을 제안하였다. 카고메 외부접합형 제진구조시스템은 대상건물, 카고메 제진장치, 지지구조물로 구성되어 있으며, 기존 층간에 설치된 제진시스템과 달리 외부 지지 구조물과 대상 건축물의 상호작용을 이용하여 제진장치가 지진 에너지를 흡수하는 시스템이다. 본 연구에서 제안한 카고메 외부접합형 제진공법의 유효성을 검증 할 목적으로 LH공사 시범적용용 RC 라멘조 20층 공동주택의 골조를 대상으로 유사동적실험을 실시하여 내진성능 개선효과를 검토하였다. 그 결과, 국내에서 발생 가능한 지진규모 (200gal)에서 비보강 골조는 중규모의 지진피해가 예상되었지만, 카고메 외부접합형 제진보강법으로 보강한 골조는 경미한 지진피해가 예상되었으며, 대규모 지진(300gal)을 상정한 경우에도 중규모 이하의 지진피해가 예상되어 본 연구에서 개발한 카고메 제진보강법의 내진성능 개선 효과의 유효성이 검증되었다고 사료된다.

개선된 인양홀을 이용한 정착장치로 보강된 RC 보의 거동 (Behavior of RC Beam Strengthened with Advanced Lifting Hole Anchorage System)

  • 오민호;김태완;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권3호
    • /
    • pp.91-99
    • /
    • 2010
  • RC 구조물의 보강에는 여러 가지 보강공법이 사용되고 있으며 특히 외부강선 보강공법은 손상된 구조물을 보강하는 대표적인 공법이며 효율성, 용이성, 경제성의 면에서도 우수하다. 본 연구에서는 PSC 및 RC 거더에서 추가 손상 없이 충분한 보강효과를 얻을 수 있는 보강공법으로써 개선된 인양홀을 이용한 정착장치를 제안하였다. 2가지 유형의 새롭게 제안된 정착장치를 6개의 실험체의 적용하였고 기존의 정착장치를 3개의 실험체에 적용하였다. 한 개의 실험체는 보강효율을 판단하기 위하여 보강공법을 적용하지 않았다. 이들 정착장치의 거동을 분석하기 위하여 정적 재하 시험을 수행하였고 실험변수들은 정착장치의 형상, 강봉의 긴장정도와 강선의 설치형태이다. 각 실험체의 보강 효과를 조사하기 위해 처짐, 변형률 그리고 파괴양상을 기록하였으며 균열하중, 항복하중, 극한하중, 연성지수 그리고 강선의 응력을 분석하였다. 그 결과 제안된 인양홀을 이용한 정착장치는 기존의 정착장치보다 높은 보강효율을 보였으며, 에너지 개념을 이용한 연성도 평가에 따르면 충분한 연성을 확보하고 있음을 알 수 있었다.

Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application

  • Unal, Alptug;Kaltakci, Mevlut Yasar
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.687-702
    • /
    • 2016
  • There are many studies in the literature conducted on the subject of ensuring earthquake safety of reinforced concrete and steel structures using steel braced frames, but no detailed study concerning individual behavior of steel braced frames under earthquake loads and strengthening of reinforced concrete structures with out-of-plane steel braced frames has been encountered. In this study, in order to evaluate behaviors of "Concentrically Steel Braced Frames" types defined in TEC-2007 under lateral loads, dimensional analysis of Concentrically Steel Braced Frames designed with different scales and dimensions was conducted, the results were controlled according to TEC-2007, and after conducting static pushover analysis, behavior and load capacity of the Concentrically Steel Braced Frames and hinges sequence of the elements constituting the Concentrically Steel Braced Frames were tested. Concentrically Steel Braced Frames that were tested analytically consist of 2 storey and one bay, and are formed as two groups with the scales 1/2 and 1/3. In the study, Concentrically Steel Braced Frames described in TEC-2007 were designed, which are 7 types in total being non-braced, X-braced, V- braced, $\wedge$- braced, $\backslash$- braced, /- braced and K- braced. Furthermore, in order to verify accuracy of the analytic studies performed, the 1/2 scaled concentrically steel X-braced frame test element made up of box profiles and 1/3 scaled reinforced concrete frame with insufficient earthquake resistance were tested individually under lateral loads, and test results were compared with the results derived from analytic studies and interpreted. Similar results were obtained from both experimental studies and pushover analyses. According to pushover analysis results, load-carrying capacity of 1/3 scaled reinforced concrete frames increased up to 7,01 times as compared to the non-braced specimen upon strengthening. Results acquired from the study revealed that reinforced concrete buildings which have inadequate seismic capacity can be strengthened quickly, easily and economically by this method without evacuating them.

PNF를 이용한 아래등세모근 강화 운동이 동결견 환자의 통증, 관절가동범위 및 장애에 미치는 영향 (The Effect of the Lower Trapezius Strengthening Exercise using PNF on Pain, Range of Motion, and Disability in Patients with Frozen Shoulder)

  • 강태우;송귀빈;김범룡
    • PNF and Movement
    • /
    • 제19권3호
    • /
    • pp.401-412
    • /
    • 2021
  • Purpose: The study aimed to determine the effect of the proprioceptive neuromuscular facilitation (PNF) lower trapezius muscle strengthening exercise on pain, shoulder range of motion, and shoulder pain and disability index (SPADI) in patients with frozen shoulder. Methods: Following baseline measurements, 30 subjects (n=30) with frozen shoulder were randomized into two groups: the PNF group (n=15), which received PNF strength training of the lower trapezius muscles, and the control group (n=15), which received gentle palpation of the skin. Each group participated in the intervention for 30 minutes, three times per week, for six weeks. The visual analogue scales for pain, range of motion, and SPADI of both groups were recorded at both pre- and post-intervention. Paired t-tests were used to determine significant changes in the post-intervention period compared with pre-intervention, and independent t-tests were used to analyze differences in the dependent variables between the two groups. Results: After the six-week intervention, both groups experienced significantly decreased pain and SPADI (p < 0.05) and significantly increased shoulder flexion, abduction, internal rotation, and external rotation range of motion (p < 0.05). The PNF group that received the PNF strength exercise of the lower trapezius muscles showed greater improvements in pain and range of motion than those of the control group (p < 0.05). Conclusion: These results suggest that the PNF lower trapezius strengthening exercise reduces shoulder pain and disability levels and enhances shoulder range of motion in patients with frozen shoulder.

외적 포스트텐셔닝 보강에서 데비에이터의 위치에 따른 전단보강효과 (Shear Strengthening Effect by Deviator Location in Externally Post-tensioning Reinforcement)

  • 이수헌;신경재;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권6호
    • /
    • pp.3-10
    • /
    • 2018
  • This paper described the shear strengthening effect by deviator location in pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. Three reinforced concrete beams as control beam and eight post-tensioned beams using external steel rods were tested to fail in shear. The externally post-tensioning material was a steel rod of 22 mm diameter, and it had a 655 MPa yield strength and an 805 MPa tensile strength. Specimens depend on multiple variables, such as the number of deviators, location of deviator, and load pattern. The pre-damaged loads up to about 2/3 of ultimate shear capacities were applied to specimens using displacement control and the diagonal shear crack just occurred at these loading levels. And then, the post-tensioning up to when a strain of steel rod reaches about $2000{\mu}{\varepsilon}$ was continuously applied to beam. A displacement control was changed to a load control during post-tensioning. The post-tensioning resulted in increase of load-carrying capacity and restoration of existing deflection. Also, it prevented the existing diagonal cracks from excessively growing. Two deviators effectively improved the load capacity when compared with in case of test which one deviator at mid-span installed. When deviators were located near region which the diagonal crack occurred on, the strengthening impact by post-tensioning was greater.