• Title/Summary/Keyword: external heat

Search Result 864, Processing Time 0.032 seconds

Simulation of the High Frequency Hyperthermia for Tumor Treatment (종양치료용 고주파 열치료 인체적용 시뮬레이션)

  • Lee, Kang-Yeon;Jung, Byung-Geun;Kim, Ji-won;Park, Jeong-Suk;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.257-263
    • /
    • 2018
  • Hyperthermia supplies RF high-frequency energy above 1MHz to the tumor tissue through the electrodes. And the temperature of the tumor tissue is increased to $42^{\circ}C$ or more to cause thermal necrosis. A mathematical model can be derived a human body model for absorption and transmission of electromagnetic energy in the human model and It is possible to evaluate the distribution of temperature fields in biological tissues. In this paper, we build the human model based on the adult standard model of the geometric shape of the 3D model and use the FVM code. It is assumed that Joule heat is supplied to the anatomical model to simulate the magnetic field induced by the external electrode and the temperature distribution was analyzed for 0-1,200 seconds. As a result of the simulation, it was confirmed that the transferred energy progressively penetrates from the edge of the electrode to the pulmonary tumors and from the skin surface to the subcutaneous layer.

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Porous Media Modelling and Verification of Thermal Analysis for Inlet and Outlet Ducts of Spent Fuel Storage Cask (사용후핵연료 저장용기 유로입출구의 다공성매질 모델링 및 열해석 검증평가)

  • Lee, Ju-Chan;Bang, Kyung-Sik;Choi, Woo-Seok;Seo, Ki-Seog;Ko, Sungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.223-232
    • /
    • 2018
  • Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.

Development of Digital Solder Station Based on PID Controller (PID 제어기를 이용한 전기인두기의 온도 제어 시스템 개발)

  • Oh, Kab-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.866-872
    • /
    • 2010
  • In this paper, we developed a digital soldering station based on PID controller, which supply stable power by controlling the current of heater of soldering iron. The proposed system designed PID controller to converge quickly to the set up temperature by user, and regain the lost of heat by external factors quickly. PID controller, designed by Ziegler-Nichols' tuning method, decides triac's trigger timing using setting temperature and present temperature to control the phase of AC 24V power that supply to the heater. Also, we give the function that shows present temperature and setting temperature of iron, and working time by graphic LCD. And during the rest time, we decided the power saving and extension of iron tip by dropping to the optimal temperature. Two experiments had implemented in $25^{\circ}C$ laboratory to confirm the performance of proposed method. The first experiment took 12sec, 13sec, 16sec, 18sec, reaching to $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$, $480^{\circ}C$ respectively which result showed shorten of rising time than previous method. In the loading experiment of $300^{\circ}C$, $400^{\circ}C$, $480^{\circ}C$ steady state showed temperature drop of $3.8^{\circ}C$, $4.1^{\circ}C$, $4.5^{\circ}C$ which result showed the low temperature deviation than previous method.

Minimum Film Boiling Temperatures for Spheres in Dilute Aqueous Polymer Solutions and Implications for the Suppression of Vapor Explosions (폴리머 수용액에서 구형체의 최소막비등온도와 증기폭발 억제 효과)

  • Bang, Kwang-Hyun;Jeun, Gyoo-Dong
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.544-554
    • /
    • 1995
  • Pool boiling of dilute aqueous solutions of polyethylene oxide polymer has been experimentally investigated for the purpose of understanding the physical mechanisms of the suppression of vapor explosions in this polymer solution. Tn solid spheres of 22.2mm and 9.5mm-diameter ore heat-ed and quenched in the polymer solutions of various concentrations at 3$0^{\circ}C$. The results showed that minimum film boiling temperature($\Delta$ $T_{MFB}$) in this highly-subcooled liquid rapidly decreased from over $700^{\circ}C$ for pure water to about 15$0^{\circ}C$ as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 35$0^{\circ}C$ for 9.5mm sphere. This large decrease of minimum film boiling temperature in this aqueous polymer solution may explain its ability to suppress spontaneous vapor explosions. Also, tests with applying a pressure wave showed that the vapor film behaved more stable against an external disturbance at higher polymer concentrations. These observations together with the experimental evidences of vapor explosion suppression in dilute polymer solutions suggest that the application of polymeric additives such as polyethylene oxide as low as 300ppm to reactor emergency coolant be considered to prevent or mitigate energetic fuel-coolant interactions during severe reactor accidents.s.

  • PDF

Development of Eco-friendly Combustion Process for Waste 2,4,6-trinitrotoluene (폐 2,4,6-trinitrotoluene의 환경 친화적 연소처리공정 개발)

  • Kim, Tae Ho;An, Il Ho;Kim, Jong Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.247-254
    • /
    • 2021
  • In this study, an eco-friendly combustion process of waste 2,4,6-trinitrotoluene (TNT: 2,4,6-trinitrotoluene) was developed, and fundamental data for the quantity of the organic matter in the final combustion residues is presented. Because complete combustion of TNT is not possible theoretically, the combustion process was optimized to reduce organic matter content in the combustion residue by performing measures such as heating time changes, addition of propellant material, and after treatment using a high-temp electrical furnace. From the results, it was confirmed that the organic matter content in the residue could be decreased to 7 ~ 10% with each method. The quantity of the organic matter could be minimized by optimizing the combustion conditions of the process. With only a combustion time increase, the amount of organic matter in the combustion residues was measured at about 9 wt%. The environmental friendliness of the final exhaust gas was also confirmed by real time gas component analyses. In addition, the organic contents could be reduced by a further 2 wt% by applying an additional heat treatment using an external electric furnace after the first incineration treatment. In the combustion process of propellant added waste TNT, it was found that various TNT wastes could be treated using the same eco-friendly protocols because the organic content in the residue decreased in accordance with the amount of propellant. The amount of the organic matter content produced by all these methods fulfilled the requirements under the Waste Management Act.

Analysis of Volatile Organic Compounds in Sediments Using HS-GC/MS - Confirmation of Matrix Effects in External and Internal Standard Methods - (HS-GC/MS를 이용한 퇴적물 중 휘발성유기화합물 분석 - 외부 및 내부표준방법에서 매질영향 확인 -)

  • Shin, Myoung-Chul;Jung, Da-som;Noh, Hye-ran;Yu, Soon-ju;Seo, Yong-Chan;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.510-519
    • /
    • 2021
  • Volatile Organic Compounds (VOCs) in sediments, which can cause human health problems, have been monitored in Korea since 2014. Measured VOC concentrations can be affected by matrix type and the volatility of target substances. In this study, (1) VOCs volatility and the influence of matrix interference were confirmed, and (2) internal standards (IS) method was applied to improve analytical method. For these purposes, method detection limit (MDL), calibration linearity, precision and accuracy of VOCs were compared in various matrices using the IS. Some of VOCs in sediments showed different peak areas and reduced rates compared to water matrix. It was suggested that adsorption properties of sediments hindered the migration to vapor during heat pretreatment in headspace method. A calibration curve was created in clean sand. Recovery rates for the calibration curve method and IS applying method were 64.1~83.1% and 99.1~119.3%, respectively. Relative standard deviations ranged from 11.1% to 21.6% for the calibration curve method and those for IS ranged 4.7% to 13.7%. In case of real sediment, calibration curve and 1,2-Dichlorobenzene-d4 (ODCB) among IS were not suitable. The average recovery rate of Fluorobenzene (FBZ) increased by 56.4% and Relative Standard Deviation (RSD) by 4.7%. However, the recovery rate was increased in the samples with large values of igniting intensity. This study confirmed that influence of the matrix of VOCs in sediment, and addition of IS materials improved precision and accuracy. Although IS corrects volatilization and adsorption, it is recommended that more than two types of IS should be added rather than single.

High Temperature Application of Iron Removal Chemical Cleaning Solvent in the Secondary Side of Nuclear Steam Generators (증기발생기 2차측 제철화학세정액의 고온적용)

  • Hur, D.H.;Lee, E.H.;Chung, H.S.;Kim, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.140-148
    • /
    • 1994
  • A qualification test was performed for the iron removal chemical cleaning of the secondary side of nuclear steam generators at the selected temperature, 1$25^{\circ}C$, higher than the standard application temperature, 93$^{\circ}C$. The field cleaning condition for a nuclear unit was tested in a bench scale test loop including a SUS 316 stainless steel autoclave with one gallon capacity as a test vessel. The kinetics of sludge dissolution, corrosion of the secondary side materials and change of solvent chemistry were monitored. Test results indicated that more thorough cleaning was accomplished in less than half of the cleaning time required at 93$^{\circ}C$. And the total corrosions of the secondary side materials were found to be less than the values at 93$^{\circ}C$. While the solvent is recirculated and heated by an external chemical cleaning equipment for the conventional 93$^{\circ}C$ process, the secondary side is heated by the lateral heat of the primary coolant without the recirculation of the cleaning solution, and the solvent is mixed by vigorous boiling induced by periodic ventilation for the high temperature process. The requirement that the reactor coolant pumps should be running during the cleaning operation is the major disadvantage of the high temperature process which also should be considered when chemical cleaning is planned for steam generators under operation.

  • PDF

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification (영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구)

  • Moon, Sujin;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.63-70
    • /
    • 2018
  • Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.