• Title/Summary/Keyword: external electrode

Search Result 264, Processing Time 0.016 seconds

Low-k Polymer Composite Ink Applied to Transmission Line (전송선로에 적용한 Low-k 고분자 복합 잉크 개발)

  • Nam, Hyun Jin;Jung, Jae-Woong;Seo, Deokjin;Kim, Jisoo;Ryu, Jong-In;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.99-105
    • /
    • 2022
  • As the chip size gets smaller, the width of the electrode line is also fine, and the density of interconnections is increasing. As a result, RC delay is becoming a problem due to the difference in resistance between the capacitor layer and the electrical conductivity layer. To solve this problem, the development of electrodes with high electrical conductivity and dielectric materials with low dielectric constant is required. In this study, we developed low dielectric ink by mixing commercial PSR which protect PCB's circuits from external factors and PI with excellent thermal property and low-k characteristics. As a result, the ink mixture of PSR and PI 10:3 showed the best results, with a dielectric constant of about 2.6 and 2.37 at 20 GHz and 28 GHz, respectively, and dielectric dissipation was measured at about 0.022 and 0.016. In order to verify the applicability of future applications, various line-width transmission lines produced on Teflon were evaluated, and as a result, the loss of transmission lines using low dielectric ink mixed with PI was 0.12 dB less on average in S21 than when only PSR was used.

A Study on Improving the Current Density Distribution of the Cathode by the Bipolar Phenomenon of the Auxiliary Anode through the Hull Cell Experiment (헐셀을 통한 보조 양극의 바이폴라 현상에 의한 음극의 전류밀도 분포 개선 영향성 연구)

  • Young-Seo Kim;Yeon-Soo Jeong;Han-Kyun Shin;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2023
  • The possibility of improving plating thickness distribution was investigated through quantitative consideration of bipolar electrodes without external power applied. By having the cathode tilted with respect to the anode, the potential distribution in the electrolyte solution adjacent to the cathode is different due to the difference in iR drop due to the path difference to the anode in each region of the cathode. The purpose of this study is to observe the bipolar characteristics in the case of an auxiliary anode for the non-uniform potential distribution of such a Hull cell. In particular, in order to evaluate the possibility of improving the non-uniform thickness distribution of the cathode by utilizing these bipolar characteristics, it was verified through experiments and simulations, and the electric potential and current density distribution around the bipolar electrode were analyzed. The electroplating in a Hull cell was performed for 75 min at a current density of 10 mA/cm2, and the average thickness is about 16 ㎛. The standard deviation of the thickness was 10 ㎛ in the normal Hull cell without using the auxiliary anode, whereas it was 3.5 ㎛ in the case of using the auxiliary cathode. Simulation calculations also showed 8.9 ㎛ and 3.3 ㎛ for each condition, and it was found that the consistency between the experimental and simulation results was relatively high, and the thickness distribution could be improved through using the auxiliary anode by the bipolar phenomenon.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

24 Hour Esophageal PH Monitoring in Preterm Infants (미숙아에서의 24시간 식도 PH 검사)

  • Park, Jeung-Hyun;Park, Beom-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.4 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • Purpose: Gastroesophageal reflux (GER) has been found to be the causative factors of apnea, stridor, feeding intolerance, poor weight gain, and sudden infants death syndrome (SIDS) in infants. GER is a well-described in infants and children, but only scant mention of the premature infants with GER can be found in the literature. Methods: Esophageal pH was measured during 24 hour in 21 healthy preterm infants, using a silicone microelectrode with an external reference electrode connected to a portable recorder. The mean age of the patients was $29{\pm}8$ days, mean gestational age was $30^{+5}{\pm}2^{+0}$ weeks, mean birth weight was $1,468{\pm}329$ g, mean postconceptional age was $34^{+6}{\pm}1^{+4}$ weeks and mean weight was $1,750{\pm}329$ g. We evaluated the following reflux parameters; number of acid reflux, number of long acid reflux, longest acid reflux minutes, and reflux index. Results: Pathologic GER was detected in 12 (57%) subjects and most interesting parameters are reflux index and number of episodes with a pH<4 during 24 hour (high correlation with postprandial reflux index). Reflux was not correlated to gestational age, birth weight, age, postconceptional age, weight, sex and medication of the theophylline. Conclusion: Gastroesophageal reflux is common in preterm infants, but it is usually not apparent, even with severe reflux.

  • PDF