• Title/Summary/Keyword: external curing

Search Result 66, Processing Time 0.027 seconds

Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Dong-Yeon;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • PURPOSE. This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS. A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P<.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION. Interim crowns with 10-minute post-curing showed high accuracy.

Experimental and analytical study on flexural behaviour of fly ash and paper sludge ash based geopolymer concrete

  • Senthamilselvi, P.;Palanisamy, T.
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 2018
  • This article presents the flexural behaviour of reinforced fly ash (FA)-based geopolymer concrete (GPC) beams with partial replacement of FA for about 10% by weight with paper sludge ash (PSA). The beams were made of M35 grade concrete and cured under three curing conditions for comparison viz., ambient curing, external exposure curing, and oven curing at $60^{\circ}C$. The beams were experimentally tested at the 28th day of casting after curing by conducting two-point loading flexural test. Performance aspects such as load carrying capacity, first crack load, load-deflection and moment-curvature behaviours of both types of beams were experimentally studied and their results were compared under different curing conditions. To verify the response of reinforced GPC beams numerically, an ANSYS 13.0 finite element program was also used. The result shows that there is a good agreement between computer model failure behaviour with the experimental failure behaviour.

Design of a Concrete Mix Considering Curing Temperature and Delay Time in Concrete Placement (현장 콘크리트 타설시 양생온도와 대기시간을 고려한 배합설계 결정)

  • Moon, Sungwoo;Lee, Seong-Haeng;Choi, Hyun-Uk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.133-140
    • /
    • 2019
  • The concrete mix should be designed and produced to reflect the specific site conditions during concrete placement. That is, the concrete mix design should be planned considering temperatures, work environments, pouring methods, etc. The objective of this research is to understand the external factors of curing temperature and delay time that influence concrete strengths during pouring work, and provide concrete mix design that can be most robust to the effects of external factors. The Taguchi's robust method is used in preparing the concrete mix design to achieve the research objective. In a case study, an indoor concrete test was performed to find the optimal combination of concrete mixes with external factors of curing temperature and delay time. Concrete test cylinders were made to test concrete strengths given different external factors. The study results showed that the optimal performance of concrete strength can be achieved by applying the robust method when preparing a concrete mix design.

An Experimental Study on the Characteristics of Microporous Structure Formation by Curing Condition of Cement and Blast Furnace Slag Composite (시멘트 및 고로슬래그 경화체의 양생환경에 따른 미세 공극구조 형성 특성에 관한 실험적 연구)

  • Park, Cheol;Jung, Yeon-Sik;Seo, Chee-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.63-70
    • /
    • 2017
  • When industrial by-products like slag and fly ash are using in concrete with cement, it improves strength and durability against external deterioration factors by densifying the structure through potential hydraulic and pozzolanic reaction. But it has been pointed out that high dependence on the quality variation and the curing condition using a admixure material for concrete. In this study, the characteristics of internal micropore structure according to curing condition were analyzed for pastes and mortar specimens under using blast furnace slag powder. As a result, the variation of compressive strength and the internal microstructure were observed according to curing conditions by binder type. Particularly, using blast furnace slag powder, decrease in compressive strength were clearly observed in indoor and carbonation curing compared with water curing. The pore structure analysis also clearly observed the decrease of the gel pore existing in the CSH hydrate layer and the increase of the capillary pore in indoor and carbonation curing compared with water curing condition.

Confirmation of Applicability of Heating and Curing Method of Concrete in Winter Using Electric Heating System (전기열풍기를 이용한 동절기 콘크리트 가열양생공법 적용 및 적정성 효과 검증)

  • Kim, Se-Jong;Park, Jong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.131-132
    • /
    • 2022
  • Looking at recent construction cases at winter construction sites, there is a risk that heat sources such as kerosene fans and fossil fuels (brown coal, molded carbon) used in concrete will cure rapidly, so in situations where further curing is impossible after formwork removal, the outer wall and the entire slab are exposed to rapid external deterioration, resulting in delays in concrete strength expression and until collapse accidents. In this study, we applied kerosene fans and tropical circulating electric heat fans mainly used as curing heat sources at construction sites, comparative analysis. also verified the performance of structures during concrete curing due to thermal convention / circulation performance, concrete demand strength expression, and implementation of electric heat fans by heavy disaster methods.

  • PDF

Concrete Strength Prediction Neural Network Model Considering External Factors (외부영향요인을 고려한 콘크리트 강도예측 뉴럴 네트워크 모델)

  • Choi, Hyun-Uk;Lee, Seong-Haeng;Moon, Sungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.7-13
    • /
    • 2018
  • The strength of concrete is affected significantly not only by the internal influence factors of cement, water, sand, aggregate, and admixture, but also by the external influence factors of concrete placement delay and curing temperature. The objective of this research was to predict the concrete strength considering both the internal and external influence factors when concrete is placed at the construction site. In this study, a concrete strength test was conducted on the 24 combinations of internal and external influence factors, and a neural network model was constructed using the test data. This neural network model can predict the concrete strength considering the external influence factors of the concrete placement delay and curing temperature when concrete is placed at the construction site. Contractors can use the concrete strength prediction neural network model to make concrete more robust to external influence factors during concrete placement at a construction site.

Prediction of Concrete Strength Using Multiple Neural Networks (다중 신경망을 이용한 콘크리트 강도 추정)

  • 이승창;임재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.647-652
    • /
    • 2002
  • In the previous study, authors presented the I-ProConS (Intelligent PREdiction system of CONcrete Strength) using artificial neural networks (ANN) that provides in-place strength information of the concrete to facilitate concrete form removal and scheduling for construction. The serious problem of the system has occured, which it cannot appropriately predict the concrete strength when the curing temperature of a curing day is changed. This is because it uses the single neural networks, which all nodes are fully connected, and thus it cannot smoothly respond for external impact. However this paper presents that the problem can be solved by multiple neural networks, which is composed of five ANNs.

  • PDF

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • Lee Ho-Jung;Chun Keyoung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.162-169
    • /
    • 2005
  • The functional external fixator system fur bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for the bone deformity. The FE model using the compressive and bending FE analysis was applied to the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm; the bending stiffness value in experiment was 259.74N/mm; compressive stiffness value in FEM was 188.67N/mm; bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

Development of a Functional External Fixator System for Bone Deformity near Joints in Legs (족관절 근위부 골교정용 기능성 체외고정장치 개발)

  • 전경진;이호중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1248-1251
    • /
    • 2004
  • The functional external fixator system for bone deformity near joints in legs using the worm gear was developed for curing the difference angles in fracture bone and the lengthening bar for curing the difference length in fracture bone. Both experiments and FE analysis were performed to compare the elastic stiffness in several loading modes and to improve the functional external fixator system for bone deformity near joints in legs. The FE model using the compressive and bending FE analysis was applied the FE analysis due to the angle differences. The results show that the compressive stiffness value in experiment was 175.43N/mm, the bending stiffness value in experiment was 259.74N/mm, compressive stiffness value in FEM was 188.67N/mm, bending stiffness value in FEA was 285.71N/mm. The errors between experiments and FEA were less than 10%. The maximum stress (157MPa) to the angle of clamp was lower than the yield stress (176.4MPa) of SUS316L. The stiffnesses in both axial compressive and bending of the new fixator are about 2 times higher than other products except EBI (2003).

  • PDF

STUDES ON THE CHEMICAL COMPONENTS BY THE CURING CONDITION OF FLUE-CURED TOBACCO LEAVES Effect of Temperature Raising Rate during the Midrib Drying Stage of Flue-curing (황색종 연초 건조에 있어서 건조조건에 따른 내용성분 변화 II. 중골건조기 승온속도에 따른 영향)

  • Seok, Yeong-Seon;Hwang, Keon-Joong;Lee, Eun-Hong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • This experiment was carries out to study on the effect of temperature raising rate to chemical composition of tobacco leaves during the midrib drying stage of flue-curing. The results were as follows : In the case of the temperature raising rate became more rapidly during midrib drying stage. It had a tendency to increase in oxailic acid, succinlc acid, ammonia, polyphenol; there was a large loss of total sugar, reducing sugar, malic acid, palmitic acid and linolenic acid; leaf color became more reddish; the leaf quality index value decreased, thereby the quality of external appearance deteriorated. It is desirable that the temperature raising rate had to be more slowly.

  • PDF