• Title/Summary/Keyword: extender

Search Result 282, Processing Time 0.022 seconds

Effect on In­Vitro Fertilization of Pig Oocytes Matured in Different In­Vitro Maturation Media according to Sperm Concentration of Liquid Boar semen (돼지 액상정액의 정자 주입농도가 서로 다른 체외성숙배지에서 배양된 난포란의 체외수정에 미치는 영향)

  • 박창식;이영주;고현진;양창범;손동수;서길웅;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The present study was carried out to investigate the effects of maturation media on penetrability of pig oocytes by liquid boar sperm coincubated with different sperm concentrations in a modified Tris­buffered medium (mTBM). Follicular oocytes collected from ovaries of prepubertal gilts were matured in a modified TCM-199 (mTCM-199) medium, modified Waymouth MB 752/1 (mWaymouth MB 752/1) medium or NCSU-23 medium. Oocytes (30~40) were transferred into each well of a Nunc 4-well multidish containing 0.5 $m\ell$ maturation medium. The sperm­ich portion of ejaculates with greater than 90% motile sperm were used in the experiment. The semen was cooled 22 to 24$^{\circ}C$ over 2 h period. The semen was diluted with Beltsville Thawing Solution (BTS) extender at room temperature to give 2$\times$10$^{8}$ sperm/$m\ell$ in 100 $m\ell$ plastic bottle. Liquid boar semen of 30 $m\ell$ in 100 $m\ell$ plastic bottle was kept at 17$^{\circ}C$ far 5 days. The sperm with greater than 70% motility after day 5 of storage were used for in-vitro fertilization (IVF). After 44 h maturation of immature oocytes in 5% $CO_2$in air at 38.5$^{\circ}C$, cumulus cells were removed and oocytes (30~40) were coincubated for 6 h in 0.5 $m\ell$ mTBM fertilization medium with five different (1$\times$10$^{6}$ , 2$\times$10$^{6}$ , 4$\times$10$^{6}$ , 6$\times$10$^{6}$, 10$\times$10$^{6}$ $m\ell$) sperm concentrations. At 6 h after IVF, oocytes were transferred into 0.5 $m\ell$ NCSU-23 culture medium fur further culture of 6 h. At 12 h after IVF, sperm penetration, polyspermy and male pronuclear formation of oocytes were evaluated. Oocytes of NCSU-23 maturation medium decreased polyspermy and increased male pronuclear formation compared to those of mTCM­199 and mWaymouth MB 752/1 maturation media. Of oocytes matured in NCSU-23 medium and inseminated in mTBM medium with 2~4$\times$10$^{6}$ $m\ell$ sperm concentrations, 50.8~50.9% showed sperm penetration, 13.3~19.5% polyspermy and 43.9~45.4% male pronuclear formation. In conclusion, we found out that oocytes matured in NCSU­23 medium and inseminated in mTBM medium showed superior in­vitro fertilization compared to those matured in mTCM­199 and mWaymouth MB 752/1 maturation media and inseminated in mTBM medium. The optimum sperm concentrations for in-vitro fertilization of oocytes matured in NCSU-23 medium by liquid boar semen stored at 17$^{\circ}C$ for 5 days were 2~4$\times$10$^{6}$ $m\ell$.

Studies on the Extending of Plywood Adhesives used Foliage Powder (낙엽분말(落葉粉末)을 이용(利用)한 합판용(合板用) 접착제(接着劑)의 증량(增量)에 관(關)한 연구(硏究))

  • Kim, Jong-Man;Bark, Jong-Yeol;Lee, Phil-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.83-100
    • /
    • 1979
  • It was planned and performed to study the possibility on the use of inexpensive and easily acquirable foliage powder, which processed by pulverizing after dried, instead of imported expensive wheat flour for the extending of plywood adhesives. Pine leaves of softwood trees, Poplar, Oak and Sycamore leaves of broad leaved species were selected and harvested to pulverize into the minute foliage powder. The harvested foliages from each selected species were pulverized into 40 mesh particles after dried at $100{\sim}105^{\circ}C$ condition during 24 hours in drying oven. To compare the extending effect of plywood adhesives with these foliage powders 100 mesh wheat flour using at current plywood industry was also prepared. Foliage powder and wheat flour were extended into 10, 20, 30, 50 and 100% to the urea and phenol formaldehyde resin. After plywoods were processed by the above extending method shear strength of extended plywoods were analyzed and discussed. The results obtained at this study are as follows: 1) Among 10% extensions of urea formaldehyde resin plywood, dry shear strength of plywood extended by wheat flours was the highest and that of non-extended plywood the next. Plywood extended with foliage powder showed the lowest dry shear strength. The order of dry shear strength of plywoods extended by foliage powder was that of Oak foliage powder extension, the best, that of Sycamore, that of Pine, and that of Poplar. 2) Among 20% extensions of urea formaldehyde resin plywood, plywood extended by wheat flour showed the highest dry shear strength, and the next was plywood by Poplar foliage powder. All these two showed higher dry shear strength than non-extension plywoods. Except Poplar, dry shear strength of foliage powder extension plywoods was bad, but the order of dry shear strength of plywoods extended by foliage powder was Pine, Poplar and Oak. 3) In the case of 30% extensions of urea formaldehyde resin plywood, dry shear strength of wheat flour extension was the highest and non-extension the next. Dry shear strength of foliage powder extension plywoods was poor with a rapid falling-off in strength. 4) Among 50% and 100% extensions of urea formaldehyde resin plywood, only wheat flour showed excellent dry shear strength. In the case of foliage powder extension, low dry shear strength showed at the 50% extension of Pine and Poplar, and plywoods of 50% extension of Oak foliage powder delaminated without measured strength. All plywoods of 100% foliage powder extension delaminated, and then shear strength were not measured. 5) Among wet shear strength of 10% extensions of urea formaldehyde resin plywood, wheat flour extension was the highest as in the case of dry shear strength, and non-extension plywood the next. Except Poplar foliage extension, all foliage powder extension plywoods showed low shear strength. 6) Wet shear strength of plywoods of 20% extension lowered in order of non-extension plywood, plywood of wheat flour extension and plywood of foliage powder extension, but other plywoods of foliage powder extension except plywoods of Poplar and Oak foliage powder extension delaminated. 7) Wet shear strength of 30% or more extension of urea formadehyde resin plywood were weakly measured only at 30% and 50% extension of wheat flour, and wet shear strength of plywoods extended by foliage powder were not measured because of delaminating. 8) Dry shear strength of phenol formaldehyde plywoods extended by 10% wheat flour was the best, and shear strength of plywoods extended by foliage powder were low, but the order was Oak, Poplar, and Pine. Plywood of Sycamore foliage powder extension delaminated. 9) In the case of 20% extensions of phenol formaldehyde resin, dry shear strength of plywood extended by wheat flour was the best, but plywood of Pine foliage powder extension the next, and the next order was Oak and Poplar foliage powder. Plywood of Sycamore foliage powder extension delaminated. 10) Among dry shear strength of 30% extensions of phenol formaldehyde plywood, that of Pine foliage powder extension was on the rise and more excellent than plywood of wheat flour extension, but Poplar and Oak showed the tendency of decreasing than the case of 20% extension. Plywood of Sycamore foliage powder extension delaminated. 11) While dry shear strength of 50% and 100% extension plywoods were excellent in the case of Pine foliage powder and wheat flour extension, that of hardwood such as Poplar, Oak, and Sycamore foliage powder extension were not measured because of delaminating. 12) As a filler the foliage powder extension of urea formaldehyde resin is possible up to 20% with Poplar foliage powder. And also as an extender for phenol formaldehyde resin, Pine foliage powder can be added up to the same amount as that in the case of wheat flour.

  • PDF