• 제목/요약/키워드: expulsion valve

검색결과 5건 처리시간 0.025초

전기.유압 서보밸브를 이용한 압축가스 방출시스템의 동특성 해석 및 제어 (The Analysis of Dynamic Characteristics and the Control of Compressed Gas Expulsion System Using Electro-Hydraulic Servo Valve)

  • 김용만;김정관;한명철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.710-714
    • /
    • 2005
  • A dynamical analysis and PID control of a compressed gas expulsion system is performed. The purpose of this study is to develop a compressed gas discharging system and to verify the validity of the system. The electro-hydraulic servo valve is modeled as a 3th order transfer function to calculate flow force affecting expulsion valve is significantly considered. The friction force in the expulsion valve is considered as a nonliner model of stribeck effect. The dynamic characteristics of this system is examined by the computer simulation. The position control of the expulsion valve is performed by PID controller.

  • PDF

압축가스 방출 유압시스템 해석 및 제어 (The Analysis and Control of Compressed Gas Discharging System)

  • 장웅락;김정관;한명철;정찬희;박인기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF

수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석 (Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP)

  • 한명철;김정관;김광수
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

압축공기 방식 수중발사 시스템의 동특성 시뮬레이션 (Simulations of Dynamic Characteristics of the Underwater Discharge System with Compressed Air)

  • 박인기
    • 한국군사과학기술학회지
    • /
    • 제7권2호
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, simulations of the underwater discharge system with compressed air are performed to predict dynamic characteristics of the system and to find optimal opening trajectories of the expulsion valve. Major components of the system are defined and their governing equations are derived to make up the mathematical model. The compressed air discharge method is affected largely by the discharge depth, and therefore the opening trajectories according to the discharge depth should be found to satisfy the demands of discharge performances. Simulation results are compared with experimental data to confirm the validity of the system model.