• Title/Summary/Keyword: expression vectors

Search Result 390, Processing Time 0.048 seconds

NELL2 gene as regulator of cell cycle in neuron differentiation (신경세포 분화에서 세포주기 조절인자로서의 NELL2 유전자의 역할)

  • Joung, Mi Rim;Oh, Yeon Mi;Park, Woo Saeng;Park, Sang Kyu
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.10
    • /
    • pp.1100-1105
    • /
    • 2006
  • Purpose : Because NELL2 expression is strictly restricted only in neurons in developing and post-differentiated neural tissues, it is thought to be involved in the neuronal differentiation during development and in the maintenance of neuronal physiology in the post-differentiated neurons. In this study, we examined whether NELL2 is involved in the regulation of cell cycle and apoptosis in the hippocampal neuroprogenitor HiB5 cells. Methods : Effects of NELL2 on the cultured HiB5 cell numbers, DNA fragmentation, and proteins involved in the regulation of the cell cycle were measured. Results : NELL2 induced a decrease in cell numbers and an increase in G1 phase arrest. Moreover, transfection of NELL2 resulted in an increase of DNA fragmentation that shows an evidence of apoptosis. Contents of proteins involved in the regulation of cell cycle were also changed by transfection of NELL2 expression vectors. Conclusion : This study suggests that NELL2 plays an important role in the regulation of cell cycle and apoptosis of neurons.

β3GnT8 Regulates Laryngeal Carcinoma Cell Proliferation Via Targeting MMPs/TIMPs and TGF-β1

  • Hua, Dong;Qin, Fang;Shen, Li;Jiang, Zhi;Zou, Shi-Tao;Xu, Lan;Cheng, Zhi-Hong;Wu, Shi-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2087-2093
    • /
    • 2012
  • Previous evidence showed ${\beta}1$, 3-N-acetylglucosaminyltransferase 8 (${\beta}3GnT8$), which can extend polylactosamine on N-glycans, to be highly expressed in some cancer cell lines and tissues, indicating roles in tumorigenesis. However, so far, the function of ${\beta}3GnT8$ in laryngeal carcinoma has not been characterized. To test any contribution, Hep-2 cells were stably transfected with sense or interference vectors to establish cell lines that overexpressed or were deficient in ${\beta}3GnT8$. Here we showed that cell proliferation was increased in ${\beta}3GnT8$ overexpressed cells but decreased in ${\beta}3GnT8$ knockdown cells using MTT. Furthermore, we demonstrated that change in ${\beta}3GnT8$ expression had significant effects on tumor growth in nude mice.We further provided data suggesting that overexpression of ${\beta}3GnT8$ enhanced the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) at both the mRNA and protein levels, associated with shedding of tissue inhibitors of metalloproteinase TIMP-2. In addition, it caused increased production of transforming growth factor beta 1 (TGF-${\beta}1$), whereas ${\beta}3GnT8$ gene knockdown caused the reverse effect. The results may indicate a novel mechanism by which effects of ${\beta}3GnT8$ in regulating cellular proliferation are mediated, at least in partvia targeting MMPs/TIMPs and TGF-${\beta}1$ in laryngeal carcinoma Hep-2 cells. The finding may lay a foundation for further investigations into the ${\beta}3GnT8$ as a potential target for therapy of laryngeal carcinoma.

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud (들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석)

  • Kang, So-Mi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Kwon, Yong-Ik;Ko, Suk-Min;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.450-456
    • /
    • 2016
  • Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

Triptolide-induced Transrepression of IL-8 NF-${\kappa}B$ in Lung Epithelial Cells (폐상피세포에서 Triptolide에 의한 NF-${\kappa}B$ 의존성 IL-8 유전자 전사활성 억제기전)

  • Jee, Young-Koo;Kim, Yoon-Seup;Yun, Se-Young;Kim, Yong-Ho;Choi, Eun-Kyoung;Park, Jae-Seuk;Kim, Keu-Youl;Chea, Gi-Nam;Kwak, Sahng-June;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.52-66
    • /
    • 2001
  • Background : NF-${\kappa}B$ is the most important transcriptional factor in IL-8 gene expression. Triptolide is a new compound that recently has been shown to inhibit NF-${\kappa}B$ activation. The purpose of this study is to investigate how triptolide inhibits NF-${\kappa}B$-dependent IL-8 gene transcription in lung epithelial cells and to pilot the potential for the clinical application of triptolide in inflammatory lung diseases. Methods : A549 cells were used and triptolide was provided from Pharmagenesis Company (Palo Alto, CA). In order to examine NF-${\kappa}B$-dependent IL-8 transcriptional activity, we established stable A549 IL-8-NF-${\kappa}B$-luc. cells and performed luciferase assays. IL-8 gene expression was measured by RT-PCR and ELISA. A Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation and an electromobility shift assay was done to analyze NF-${\kappa}B$ DNA binding. p65 specific transactivation was analyzed by a cotransfection study using a Gal4-p65 fusion protein expression system. To investigate the involvement of transcriptional coactivators, we perfomed a transfection study with CBP and SRC-1 expression vectors. Results : We observed that triptolide significantly suppresses NF-${\kappa}B$-dependent IL-8 transcriptional activity induced by IL-$1{\beta}$ and PMA. RT-PCR showed that triptolide represses both IL-$1{\beta}$ and PMA-induced IL-8 mRNA expression and ELISA confirmed this triptolide-mediated IL-8 suppression at the protein level. However, triptolide did not affect $I{\kappa}B{\alpha}$ degradation and NF-$_{\kappa}B$ DNA binding. In a p65-specific transactivation study, triptolide significantly suppressed Gal4-p65T Al and Gal4-p65T A2 activity suggesting that triptolide inhibits NF-${\kappa}B$ activation by inhibiting p65 transactivation. However, this triptolide-mediated inhibition of p65 transactivation was not rescued by the overexpression of CBP or SRC-1, thereby excluding the role of transcriptional coactivators. Conclusions : Triptolide is a new compound that inhibits NF-${\kappa}B$-dependent IL-8 transcriptional activation by inhibiting p65 transactivation, but not by an $I{\kappa}B{\alpha}$-dependent mechanism. This suggests that triptolide may have a therapeutic potential for inflammatory lung diseases.

  • PDF

Isolation of Myrosinase and Glutathione S-transferase Genes and Transformation of These Genes to Develop Phenylethylisothiocyanate Enriching Chinese Cabbage (배추에서 항암물질 phenylethylisothiocyanate의 다량 합성을 위한 myrosinase와 glutathione S-transferase 유전자 분리 및 이를 이용한 형질전환체 육성)

  • Park, Ji-Hyun;Lee, Su-Jin;Kim, Bo-Ryung;Woo, Eun-Teak;Lee, Ji-Sun;Han, Eun-Hyang;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.623-632
    • /
    • 2011
  • To increase the anti-carcinogens phenylethylisothiocyanate (PEITC), myrosinase (MYR), and glutathione S-transferase (GST), genes related to PEITC pathway were isolated and the gene expressions were regulated by Agrobacterium transformation. Isolated cDNAs, MYR, and GST genes were 1,647 bp and 624 bp, respectively, and the protein expression was confirmed through pET system. Thereafter, we constructed a sense-oriented over-expressing myrosinase (pBMY) and RNAi down-regulated GST (pJJGST) binary vectors for the Chinese cabbage transformation. After the transformation, thirteen over-expressing transgenic Chinese cabbage plants (IMS) with pBMY and five down-regulated ones (IGA) with pJJGST were selected by PCR analysis. Selected $T_0$ transgenic plants were generated to $T_1$ plants by self-pollination. Based on the Southern blot analysis on these $T_1$ transgenic plants, 1-4 copies of T-DNA were transferred to Chinese cabbage genome. Thereafter, RNA expression level of myrosinase gene or GST gene was analyzed through real-time RT PCR of IMS, IGA, and non-transgenic inbred lines. In case of IMS lines, myrosinase gene was increased 1.03-4.25 fold and, in IGA lines, GST gene was decreased by 26.42-42.22 fold compared to non-transgenic ones, respectively. Analysis of PEITC concentrations using GC-MS it showed that some IMS lines and some IGA lines increased concentrations of PEITC up to 4.86 fold and up to 3.89 fold respectively compared to wild type. Finally in this study IMS 1, 3, 5, 12, and 15 and IGA 1, 2, and 4 were selected as developed transgenic lines with increasing quantities of anti-carcinogen PEITC.

Developmental Genetic Analysis of Avian Primordial Germ Cells and the Application to Poultry Biotechnology

  • Kagami, H.
    • Korean Journal of Poultry Science
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2001
  • A novel sterategy has been established to determine the origin of the Primordial Germ Cells (PGCs) in avian embryos directly and the developmental fate of the PGCs for the application to Poultry biotechnology. Cells were removed from 1) the centre of area pellucida, 2) the outer of area pellucida and 3) the area opaca of the stage X blastoderm (Eyal-Giladi & Kochav, 1976). When the cells were removed from the centre of area pellucida, the mean number of circulating PGCs in blood was significantly decreased in the embryo at stage 15 (Hamburger & Hamilton, 1951) as compared to intact embryos. When the cells were replenished with donor cells, no reduction in the PGCs number was observed. The removal of cells at the outer of area pellucida or at the area opaca had no effect on the number of PGCs. In case, another set of the manipulated embryos were cultured ex vivo to the hatching and reared to the sexual maturity, the absence of germ cells and degeneration of seminiferous tubules was observed in resulting chickens derived from the blastoderm in which the cells were removed from the centre of the area pellucida. It was concluded that the avian Primordial Germ cells are originated at the center of area pellucida. Developmental ability of the cells to differentiate into somatic cells and germ cells in chimeras were analyzed. Somatic chimerism was detected as black feather attributed from donor cells. Molecular identification by use of female - specific DNA was performed. It was confirmed that the donor cells could be differentiated into chimeric body and erythrocytes. Donor cells retained the ability to differentiate into germline in chimeric gonads. More than 70% of the generated chimeras transmitted donor derived gametes to their offspring indicating that the cells at the center of area pellucida had the high ability to differentiate into germ cells. A molecular technique to identify germline chimerism has been developed by use of gene scan analysis. Strain specific DNA fragments were amplified by the method. It would be greatly contributed for the detection of germline chimerism. Mixed- sex chimeras which contained both male and female cells were produced to investigate the developmental fate of male and female cells in ovary and testes. The sex combinations of donor and recipient of the resulting chimeras were following 4 pairs; (1) chimeras (ZZ/ZZ) produced by a male donor (ZZ) and a male recipient (ZZ), (2) chimeras (ZW/ZW) produced by a female donor (ZW) and a female recipient (ZW), (3) chimeras (ZZ/ZW) Produce by a male donor (ZZ) and a female recipient (ZW), (4) chimeras (ZW/ZZ) produced by a female donor (ZW) and a male recipient (ZZ). It was found that genetically male avian germ cells could differentiate into functional ova and that genetically female germ cells can differentiate into functional spermatozoa in the gonad of the mixed- sex chimeras. An ability for introduction of exogenous DNA into the PGCs from stage X blastoderms were analyzed. Two reporter genes, SV-$\beta$gal and RSV-GFP, were introduced into the PGCs. Expression of bacterial/gal was improved by complexing DNA with liposome detectedcc in 75% of embryos at 3 days embryos. At the embryos incubated for 1 day, expression of the GFP was observed all the embryos. At day 3 of incubation, GFP was detected in about 70% of the manipulated embryos. In case of GFP, expression of the transgene was detected in 30 %e of the manipulated embryos. These results suggested that the cells is one of the most promising vectors for transgenesis. The established strategy should be very powerfull for application to poultry biotechnology.

  • PDF

Effect of Immune System on Retrovirus-Mediated Herpes Simplex Virus Thymidine Kinase Gene Therapy (면역체계가 Retroviral Vector로 이입한 Herpes Simplex Virus Thymidine Kinase 유전자치료에 미치는 영향)

  • Park, Jae-Yong;Joo, So-Young;Chang, Hee-Jin;Son, Ji-Woong;Kim, Kwan-Young;Kim, Keong-Seok;Kim, Chang-Ho;Park, Jae-Ho;Lee, Jong-Ki;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.229-240
    • /
    • 1999
  • Background: The impact of the immune response on cancer gene therapy using viral vectors to deliver a "suicide gene" is currently unclear. A vigrous immune response targeted at viral proteins or transgene may enhance the efficacy of tumor destruction and even augment responses to tumor antigens. These responses may involve the release of cytokines and stimulation of tumor specific cytotoxic T-lymphocytes that enhance therapeutic efficacy. On the other hand, a vigorous rapid cellular immune response may destroy cells expressing the therapeutic gene and attenuate the response to therapy. Furthermore, development of neutralizing antibody responses may prevent readministration of virus, a potentially significant limitation. Evaluating the significance of these limitations in animal models and developing solutions are therefore of obvious importance. Methods: After retroviral transduction of mouse mesothelioma cell line(AB12) with Herpes Simplex Virus thymidine kinase (HSVtk) gene in vitro, subcutaneous flank tumors were established. To study the effect of intact immune system on efficacy of tumor erradication, the ability of the HSVtk/ganciclovir system to inhibit tumor growth was compared among normal Balb/c mice, immunodeficient Balb/c-nude and SCID mice, and Balb/c mice immunosuppressed with cyclosporin. Results: Ganciclovir treatment resulted in greater inhibition of tumor growth in Balb/c mice compared with immunodeficient Balb/c-nude mice and SCID mice(in immunodeficient mice, there were no growth inhibition by ganciclovir treatment). Ganciclovir treatment resulted in greater inhibition of tumor growth in noncyclosporin (CSA) treated Balb/c mice compared with CSA treated Balb/c mice. On day 8, mean ganciclovir-treated tumor volume were 65% of control tumor volume in Balb/c mice versus 77% control tumor volume in CSA-treated Balb/c mice. This effect was still evident during therapy (day 11 and 13). On day 13, non-CSA treated tumor volume was 35% of control tumor volume versus 60% of control tumor volume in CSA treated Balb/c mice. Duration of expression of HSVtk was not affected by the immunosuppression with CSA. Conclusion: These results indicate that the immune responses against retrovirally transduced cells enhance the efficacy of the HSVtk/ganciclovir system. These findings have important implications for clinical trials using currently available retrovirus vectors as well as for future vector design.

  • PDF

Characterization of Plasmid pKJ36 from Bifidobacterium longum and Construction of an E. coli-Bifidobacterium Shuttle Vector

  • Park, Nyeong-Soo;Shin, Dong-Woo;Lee, Ke-Ho;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.312-320
    • /
    • 2000
  • Abstract The full sequence of the plasmid pKJ36, which was derived from Bifidobacterium longum KJ, was determined and analyzed to construct shuttle vectors between E. coli and Bifidobacterium. The plasmid pKJ36 was composed of 3,625 base pairs with a 65.1% G+C content. The structural organization of pKJ36 was highly similar to that of pKJ50, and the three major ORFs on pKJ36 showed high amino acid sequence homologies with those of pKJ50. The putative proteins coded by these three ORFs were designated as RepB (32.0 kDa, pI=9.25), MembB (29.0 kDa, pI=12.25), and MobB (39.0 kDa, pI=IO.66), respectively. The amino acid sequence of RepB showed a 57% identity and 70% similarity with that of the RepA protein of pKJ50. Upstream of the repB gene, the so-called iteron sequence was directly repeated four-and-ahalf times and a conserved dnaA box was identified. An amino acid sequence comparison between the MobB and MobA of pKJ50 revealed a 48% identity and 61 % similarity. A conserved oriT sequence with an inverted repeat identical to that of pKJ50 was also found upstream of the mobB gene. A hydropathy analysis of MembB revealed four possible transmembrane regions. The expressions of the repB and membB genes were confirmed by RT-PCR. The in vitro translation reaction of pKJ36 showed protein bands with anticipated sizes with respect to each putative gene product. S 1 endonuclease treatment and Southern hybridization suggested that pKJ36 replicates by a rolling circle mechanism via a single-stranded DNA (ssDNA) intermediate. A shuttle vector between E. coli and Bifidobacterium sp. was constructed using the pKJ36, pBR322, and staphylococcal chloramphenicol acetyl transferase (CAT) gene. The successful transformation of the Bifidobacterium strains was shown by Southern hybridization and PCR. The transformation efficiency differed from strain to strain and, depending on the electroporation conditions, with a range between $1.2{\times}10^1-2.6{\times}10^2{\;}cfu/\mu\textrm{g}$ DNA.X> DNA.

  • PDF

Recent Studies on the Edible Plant Vaccine for Prophylactic Medicine against Microorganism-Mediated Diseases (세균성 질병 예방을 위한 식물 경구 백신 연구 동향)

  • Hahn Bum-Soo;Jeong Young-Jae;Roh Kyung-Hee;Park Jong-Sug;Cho Kang-Jin;Kim Yong-Hwan;Kim Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.233-241
    • /
    • 2005
  • Plants have considerable advantages for the production of antigenic proteins because they provide an inexpensive source of protein and an easy administration of vaccine. Since a publication describing edible plant vaccine of HBsAg in 1992, a number of laboratories around the world have studied the use of plants as the bioreactor to produce antigenic proteins of human or animal pathogens. Over the last ten years, these works have been mainly focused on three major strategies for the production of antigenic proteins in plants: stable genetic transformation of either the nuclear or plastid genome, or transient expression in plants using viral vectors. As many antigenic proteins have been expressed in tobacco, also several laboratories have succeeded to express genes encoding antigenic proteins in other crop plants: potato, tomato, maize, carrot, soybean and spinach. At present many works for the production of edible plant vaccine against bacteria-mediated diseases have mostly performed the studies of enterotoxins and adhesion proteins. Also the development of new-type antigens (pili, flagella, surface protein, other enterotoxin and exotoxin etc.) is required for various targets and more efficacy to immunize against microorganism pathogens. Many works mostly studied in experimental animals had good results, and phase I clinical trial of LTB clearly indicated its immunogenic ability. On the other hand, edible plant vaccines have still problems remained to be solved. In addition to the accumulation of sufficient antigen in plants, human health, environment and agriculture regulation should be proven. Also oral tolerance, the physiological response to food antigens and commensal flora is the induction of a state of specific immunological unresponsiveness, needs to be addressed before plant-derived vaccine becomes a therapeutic option.

Engine of computational Emotion model for emotional interaction with human (인간과 감정적 상호작용을 위한 '감정 엔진')

  • Lee, Yeon Gon
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.503-516
    • /
    • 2012
  • According to the researches of robot and software agent until now, computational emotion model is dependent on system, so it is hard task that emotion models is separated from existing systems and then recycled into new systems. Therefore, I introduce the Engine of computational Emotion model (shall hereafter appear as EE) to integrate with any robots or agents. This is the engine, ie a software for independent form from inputs and outputs, so the EE is Emotion Generation to control only generation and processing of emotions without both phases of Inputs(Perception) and Outputs(Expression). The EE can be interfaced with any inputs and outputs, and produce emotions from not only emotion itself but also personality and emotions of person. In addition, the EE can be existed in any robot or agent by a kind of software library, or be used as a separate system to communicate. In EE, emotions is the Primary Emotions, ie Joy, Surprise, Disgust, Fear, Sadness, and Anger. It is vector that consist of string and coefficient about emotion, and EE receives this vectors from input interface and then sends its to output interface. In EE, each emotions are connected to lists of emotional experiences, and the lists consisted of string and coefficient of each emotional experiences are used to generate and process emotional states. The emotional experiences are consisted of emotion vocabulary understanding various emotional experiences of human. This study EE is available to use to make interaction products to response the appropriate reaction of human emotions. The significance of the study is on development of a system to induce that person feel that product has your sympathy. Therefore, the EE can help give an efficient service of emotional sympathy to products of HRI, HCI area.

  • PDF