• Title/Summary/Keyword: expression of pro-inflammatory genes

Search Result 127, Processing Time 0.029 seconds

Inhibitory Effects of Lycopene on the Expression of Pro-inflammatory Genes in Human Vascular Endothelial Cells (혈관내피세포에서 라이코펜이 염증유전자 발현에 미치는 영향)

  • Kim, Tae-Hoon;Bae, Jong-Sup
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.287-293
    • /
    • 2012
  • Lycopene, found in tomatoes and tomato products, has antioxidant, anticancer, and anti-inflammatory effects. High-mobility-group box 1 (HMGB1) mediates the pro-inflammatory responses in several inflammatory diseases. In this study, the potential roles of lycopene in the HMGB1-mediated pro-inflammatory gene expressions in the primary human-umbilical-vein endothelial cells (HUVECs) were investigated. The data showed that HMGB1 upregulated the expressions of monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6), secretory phospholipase A2 (sPLA2)-IIA, and prostaglandin E2 (PGE2). Lycopene pre-incubation for 6 h decreased the HMGB1-mediated induction of MCP-1, IL-6, sPLA2-IIA, and PGE2. Further study revealed that the inhibitory effects of lycopene on the HMGB-1 induced expression of pro-inflammatory genes were mediated by the inhibition of two important inflammatory cytokines: tumor necrosis factor (TNF)-${\alpha}$ and nuclear factor (NF)-${\kappa}B$. These results suggest that HMGB1 upregulated the expression of pro-inflammatory genes and lycopene inhibited HMGB-1-induced pro-inflammatory genes by inhibiting TNF-${\alpha}$ and NF-${\kappa}B$. This finding will serve as an important evidence in the development of a new medicine for the treatment of inflammatory diseases.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

  • Yang, Dongki;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing ${\alpha}2$ adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce $Ca^{2+}$ release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger $Ca^{2+}$ peak or increase in the presence or absence of external $Ca^{2+}$. When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced $[Ca^{2+}]_i$ signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

Immunomodulatory effects of six Acetobacter pasteurianus strains in RAW-Blue macrophage

  • Sun Hee Kim;Woo Soo Jeong;So-Young Kim;Soo-Hwan Yeo
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.65-77
    • /
    • 2023
  • In this study, we investigated the immunological properties of six strains of Acetobacter pasteurianus through nuclear factor-kappa B/activator protein-1 (NF-κB/AP-1) transcription factor activation and nitric oxide (NO) and cytokine production in macrophages. We found that the six A. pasteurianus strains had no significant inhibitory effect on the cell viability of RAW-BlueTM cells at the concentration of (25, 50, 100 CFU/macrophage). The production of NO and cytokines (TNF-α, IL-1β, and IL-6) showed different abilities of immune activation for each strain, and it was 0.7 to 0.9 times higher than that of the LPS (100 ng/mL, v/v) positive control and 7 to 8 times superior to that of the negative control group. To explore the underlying mechanism, we evaluated the mRNA expression of pro-inflammatory genes. Consequently, we found that inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expression including genes expression of cytokines were elevated by the six A. pasteurianus treatment. These results suggested that the six strains of A. pasteurianus have an excellent industrial application value as a functional material for the purpose of enhancing immune function.

Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Byung-Oh;Choi, Hyong-Woo;Park, Kyeung-Il;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.117-123
    • /
    • 2020
  • We examined the anti-inflammatory effect of the peel extract of the newly bred Korean apple (Malus domestica Borkh.) cultivar Green ball. To test its possible use as anti-inflammatory functional material, Raw 264.7 macrophages were treated with pro-inflammatory lipopolysaccharide (LPS) in the presence or absence of Green ball apple peel ethanol extract (GBE). Notably, up to 500 ㎍/mL of GBE did not result in any signs of inhibition on cellular metabolic activity or cytotoxicity in Raw 264.7 macrophages. Supplementation with GBE to LPS-treated Raw 264.7 macrophage significantly suppressed various pro-inflammatory responses in a dose-dependent manner, including i) nitric oxide (NO) production, ii) accumulation of inducible NO synthase and cyclooxygenase-2, iii) phosphorylation of nuclear factor-kappa B (NF-κB) subunit p65, and iv) expression of pro-inflammatory biomarker genes, including tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2.

The Role of Nrf2 in Cellular Innate Immune Response to Inflammatory Injury

  • Kim, Ji-Young;Surh, Young-Joon
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.159-173
    • /
    • 2009
  • Nuclear factor erythroid derived 2-related factor-2 (Nrf2) is a master transcription regulator of antioxidant and cytoprotective proteins that mediate cellular defense against oxidative and inflammatory stresses. Disruption of cellular stress response by Nrf2 deficiency causes enhanced susceptibility to infection and related inflammatory diseases as a consequence of exacerbated immune-mediated hypersensitivity and autoimmunity. The cellular defense capacity potentiated by Nrf2 activation appears to balance the population of $CD4^+$ and $CD8^+$ of lymph node cells for proper innate immune responses. Nrf2 can negatively regulate the activation of pro-inflammatory signaling molecules such as p38 MAPK, NF-${\kappa}B$, and AP-1. Nrf2 subsequently functions to inhibit the production of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, COX-2 and iNOS. Although not clearly elucidated, the antioxidative function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the expression of pro-inflammatory mediators.

Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo;Won, Tae-Joan;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.954-960
    • /
    • 2004
  • Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

Effects of Hwanggeum-tang Water Extract on the Expression of Pro-inflammatory Responses Elicited by Advanced Glycation End Products in THP-1 Cells (황금탕(黃芩湯) 추출물이 THP-1 세포에서 당화종말산물에 의한 염증반응에 미치는 효과)

  • Jeong, Sang-Hun;Lee, Kwang-Gyu;Lee, Chang-Hyun;Lee, Sang-Ryong;Kim, Jae-Eun;Ha, Ki-Tae;Shin, Sang-Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.147-154
    • /
    • 2012
  • Hwanggeum-tang (HGT) was recorded in Dongeuibogam as being able to treat Sogal whose concept had been applied to Diabetes Mellitus (DM). Advanced glycation end products (AGEs) play important roles in the development of diabetic complications such as atherosclerosis by eliciting inflammatory responses. In this study, we examined the suppressive effects of HGT against inflammation elicited by AGEs. AGEs treatment increased the expression of pro-inflammatory cytokine gene TNF-${\alpha}$; chemokines MCP-1, IP-10; pro-inflammatory cyclooxygenase COX-2 on the THP-1 cells. HGT had suppressed the expression of pro-inflammatory genes and protein levels in AGE-treated THP-1 cells. HGT had also decreased intracellular ROS production stimulated by AGEs. These results suggest that HGT has beneficial effects for the improvement diabetic vascular complication through suppressing inflammatory responses elicited by AGEs.

Anti-Inflammatory Effects of Shiitake Mushroom and Kelp Mixture Extracts in RAW264.7 Cell (RAW264.7 대식세포에서 표고버섯과 다시마 혼합 추출액의 항염증 효과)

  • Soo Bong Kim;Soon Ah Kang
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.535-542
    • /
    • 2023
  • We investigated the anti-inflammatory effects of shiitake mushroom and kelp (SMK) mixture extracts in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 cells. Treatment of RAW 264.7 cells with LPS significantly increased NO (nitric oxide) production, pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and IL-1β), and inflammation-related genes (COX-2 and inducible nitric oxide synthase (iNOS)). In cytotoxicity testing using RAW 264.7 cells, SMK mixture extracts in the range of 1-16 ㎍/mL did not inhibit cell proliferation. However, SMK mixture extracts significantly inhibited NO production in a dose-dependent manner (p<0.05). SMK treatment significantly decreased TNF-α, IL-6, IFN-γ, and IL-1β levels compared to the LPS group, and similarly, pro-inflammatory cytokine mRNA levels also decreased. SMK mixture extracts reduced the mRNA expression of COX-2 and iNOS in RAW 264.7 cells compared to LPS (p<0.05). The above results show that SMK mixture extracts suppressed the inflammatory response induced by LPS. In particular, the extracts were shown to regulate the inflammatory response by suppressing the expression of inflammatory cytokines and inflammation-related enzymes.