• 제목/요약/키워드: expression in E. coli

검색결과 1,069건 처리시간 0.042초

Isolation and Characterization of a Rice Mitochondrial Small Heat Shock Protein Gene

  • Kim, Do-Hyun;Alam, Iftekhar;Lee, Dong-Gi;Lee, Byung-Hyun
    • 한국초지조사료학회지
    • /
    • 제40권4호
    • /
    • pp.285-290
    • /
    • 2020
  • To understand the role of small heat shock protein (sHSPs) in rice plant response to various stresses such as the heat and oxidative stresses, a cDNA encoding a 24.1 kDa mitochondrial small HSP (Oshsp24.1) was isolated from rice by rapid amplification of cDNA ends (RACE) PCR. The deduced amino acid sequence shows very high similarity with other plant small HSPs. DNA gel blot analysis suggests that the rice genome contains more than one copy of Oshsp24.1. High level of expression of Oshsp24.1 transcript was observed in rice seedlings in response to heat, methyl viologen, hydrogen peroxide, ozone, salt and heavy metal stresses. Recombinant OsHSP24.1 protein was produced in E. coli cells for biochemical assay. The protein formed oligomeric complex when incubated with Sulfo-EGS (ethylene glycol bis (succinimidyl succinate)). Our results shows that Oshsp24.1 has an important role in abiotic stress response and have potential for developing stress-tolerant plants.

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon;Kim, Hyun Ju;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1919-1926
    • /
    • 2020
  • CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Expression, Purification and Functional and structural relationship of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.236-236
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase componant of the pyruvate dehydrogenase complex (PDC). PDP consists of a Mg$\^$+2/ -dependent and Ca$\^$+2)-stimulated catalytic subunit (PDPc) of Mr 52,600 and a FAD-containing regulatory subunit (PDPr) of Mr 95.600. Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major functional domains such as dihydrolipoamide acetyltransferase(E$_2$)-binding domain, regulatory subunit of PDP(PDPr)-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase (rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPm binds to the inner lipoyl domain (L$_2$) of E$_2$ of pyruvate dehydrogenase complex (PDC) in the presence of Ca$\^$+2/, not under EGTA. PDPc was limited-proteolysed by trypsin, chymotrypsin, Arg-C, and elastase at pH7.0 and 30$^{\circ}C$ and N-terminal analysis of the fragment was done. Chymotrypsin, trypsin, and elastase made two major framents: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx. 0 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35 kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Streptomycetes Inducible Gene Cluster Involved in Aromatic Compound Metabolism

  • 박현주;김응수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.422-427
    • /
    • 2003
  • Streptomyces setonii (ATCC 39116) is a Gram-positive thermophilic soil actinomycetes capable of degrading single aromatic compounds including phenol and benzoate via ortho-cleavage pathway. we isolated approximately 6.3-kb S. setonii DNA fragment containing a thermophilic catechol 1,2-dioxygenase(C12O) gene. Here we further revealed that the 6.3-kb S. setonii DNA fragment was organized into two putative divergently-transcribed clusters with 6 complete and one incomplete open reading frames (ORFs). The first cluster with 3 ORFs showed significant homologies to previously known benA, benB, and benC, implying a part of benzoate catabolic operon. The second cluster revealed an ortho-cleavage catechol catabolic operon with three translationally-coupled ORFs (catR, catB, catA). Each of these individually-cloned ORFs was expressed in E. coli and identified as a distinct protein band with a theoretical molecular weight in SDS-PAGE. The expression of the cloned S. setonii catechol operon was induced in a heterologous S. lividans by specific single aromatic compounds including catechol, phenol, and 4-chlorophenol. The simitar induction pattern was also observed using a luciferase gene-fused reporter system, implying that S. setonii employs an inducer-specific regulatory mechanism for aromatic compound metabolism.

  • PDF

Comparison of Cyanide Degrading Enzymes Expressed from Genes of Fungal Origin

  • Cho, Dae-Chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제17권11호
    • /
    • pp.1221-1226
    • /
    • 2008
  • A variety of fungal species are known to degrade cyanide through the action of cyanide hydratase, a specialized nitrilases which hydrolyze cyanide to formamide. This work is a report on two unknown and un-characterized members from Neurospora crassa and Aspergillus nidulans. Recombinant forms of three cyanide hydratases (CHT) originated from N. crassa, Gibberella zeae, and A. nidulans were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in E. coli and purified using immobilized metal affinity chromatography. These enzymes were compared according to their pH activity profiles, and kinetic parameters. Although all three were similar, the N. crassa CHT has the widest pH range of activity above 50% and highest turnover rate ($6.6{\times}10^8min^{-1}$) among them. The CHT of A. nidulans has the highest Km value of the three nitrilases evaluated in here. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. These data can be used to determine optimal procedures for the enzyme uses in the remediation of cyanide-containing wastes.

Cloning and Characterization of S-Adenosyl-L-methionine synthetase gene from Saccharomyces cerevisiae

  • Ko, Kwon-Hye;Yoon, Gee-Sun;Choi, Gi-Sub;Suh, Joo-Won;Ryu, Yeon-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.301-304
    • /
    • 2005
  • S-Adenosyl-L-Methionine(SAM) has an important role for DNA methylation and cell signaling. SAM was synthesized from methionine and ATP by SAM synthetase and play an pivotal function in the primary and secondary metabolism of cells. Recent studies have revealed in the effect of SAM in case of morphological differentiation in both eukaryotes and prokaryotes. We isolated SAM gene from Saccharomyces cerevisiae and cloned it into expression vector for E. coli respectively. An 1.15 kb SAM-s gene fragment was isolated by Low-strigency PCR using ORF primer. By the analysed primary sequence deduced from DNA sequence, this gene included conserved domains similar with other well-known SAM synthetase. First of all, SAM synthetase gene cloned pGEM-T vector and subcloned into histidine tagging system to purify the expressed protein using metal chelating resin. Typical characteristic analysis of this enzyme is underway.

  • PDF

Cloning and Expression of Glucose-1-Phosphate Thymidylyltransferase Gene (schS6) from Streptomyces sp. SCC-2136

  • Han, Ji-Man;Kim, Su-Min;Lee, Hyo-Jung;Yoo, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.685-690
    • /
    • 2007
  • The deoxysugar biosynthetic gene cluster of Sch 47554/Sch 47555 was cloned from Streptomyces sp. SCC-2136. One of the ORFs, schS6, appeared to encode glucose-1-phosphate thymidylyltransferase, which converts dTTP and glucose-1-phosphate to TDP-D-glucose and pyrophosphate. The dTDP-D-glucose is a key metabolite in prokaryotics as a precursor for a large number of modified deoxysugars, and these deoxysugars are a maj or part of various antibiotics, ranging from glycosides to macrolides. SchS6 was expressed in E. coli vector pSCHS6 and the expressed protein was purified to apparent homogeneity by ammonium sulfate precipitation and Ni-NTA affinity column chromatography. The specific activity of the purified enzyme increased 4.7-fold with 17.5% recovery. It migrated as a single band on SDS-PAGE with an apparent molecular mass of 56kDa. The purified protein showed glucose-1-phosphate thymidylyltransferase activity, catalyzing a reversible bimolecular group transfer reaction. In the forward reaction, the highest activity was obtained with combination of dTTP and ${\alpha}-D-glucose-1-phosphate$, and only 12% of that activity was obtained with the substrates $UTP/{\alpha}-D-glucose-1-phosphate$. In the opposite direction, the purified protein was highly specific for dTDP-D-glucose and pyrophosphate.

A WblA-Binding Protein, SpiA, Involved in Streptomyces Oxidative Stress Response

  • Kim, Jin-Su;Lee, Han-Na;Lee, Heung-Shick;Kim, Pil;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1365-1371
    • /
    • 2013
  • The Streptomyces coelicolor wblA gene is known to play a negative role in both antibiotic biosynthesis and the expression of genes responding to oxidative stress. Recently, WhcA, a WblA ortholog protein, was confirmed to interact with dioxygenase-encoding SpiA ($\underline{s}$tress $\underline{p}$rotein $\underline{i}$nteracting with Whc$\underline{A}$) in Corynebacterium glutamicum. We describe here the identification of a SpiA ortholog SCO2553 protein ($SpiA_{sc}$) that interacts with WblA in S. coelicolor. Using heterologous expression in E. coli and in vitro pull-down assays, we show that WblA specifically binds $SpiA_{sc}$, and is influenced by oxidants such as diamide. These data indicate that the interaction between WblA and $SpiA_{sc}$ is not only specific but also modulated by the redox status of the cell. Moreover, a $spiA_{sc}$-disruption mutant exhibited a less sensitive response to the oxidative stress induced by diamide present in solid plate culture. Real-time RT-PCR analysis also showed that transcription levels of oxidative stress response genes (sodF, sodF2, and trxB) were higher in the $spiA_{sc}$-deletion mutant than in wild-type S. coelicolor. These results show that $SpiA_{sc}$ negatively regulates WblA during oxidative stress responses in S. coelicolor.

대장균과 포유류 세포 내에서 parkin의 발현 양상에 관한 연구 (The Expression Patterns of Human Parkin in E. codi and Mammalian Cells)

  • 남민경;박혜민;최주연;박효진;정광철;강성만;임향숙
    • 생명과학회지
    • /
    • 제15권6호
    • /
    • pp.916-922
    • /
    • 2005
  • E3 ligase로 알려진 Parkin은 protein quality control에서 중요한 역할을 할 뿐만 아니라, 이런 quality control system의 이상으로 나타나는 퇴행성 뇌질환에도 밀접한 연관성이었다. 이와 같이 생체의 필수적인 업무를 담당하는 Parkin의 기능을 생화학적 측면에서 연구하기 위해서는 고 순도의 단백질을 다량 정제할 수 있는 시스템이 필요하나, 아직까지 Parkin의 발현 양상과 정제법에 관한 연구가 미흡한 상태이다. 본 연구에서는 pCEX system을 이용하여 Parkin을 대장균에서 overexpression시켜 단일 스텝으로 정제할 수 있는 방법을 정립하였다. 저온의 배양조건에서 0.01 mM의 IPTC로 발현을 유도한 결과 $90\%$ 이상의 순도를 가지는 완전한 크기의 Parkin을 정제할 수 있었다. 또한, 여러 tag을 갖는 Parkin plasmid를 제작하였을 뿐만 아니라, 이들을 HEK293 세포에 transfection하여 Parkin의 발현 양상을 비교 분석하였다. 그 결과 Parkin의 N-말단에 pretense에 민감한 절단 부위가 존재한다는 사실을 확인하였다. 본 연구에서 정립한 Parkin 정제법과 포유류 세포에서 Parkin의 발현 양상에 대한 결과는 Parkin의 기질을 탐색하고,그들이 Parkin의 효소 활성 및 기능에 미치는 영향을 조사하기 위한 다양한 연구에 활용할 수 있을 것이다.

Expression and Characterization of Polyketide Synthase Module Involved in the Late Step of Cephabacin Biosynthesis from Lysobacter lactamgenus

  • Lee, Ji-Seon;Vladimirova, Miglena G.;Demirev, Atanas V.;Kim, Bo-Geum;Lim, Si-Kyu;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.427-433
    • /
    • 2008
  • The cephabacins produced by Lysobacter lactamgenus are ${\beta}$-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, ${\beta}$-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of $His_6$-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-L-Ala-L-$^3H$-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with $^{14}C$-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.