• 제목/요약/키워드: expression in E. coli

검색결과 1,069건 처리시간 0.028초

A Discrete Mathematical Model Applied to Genetic Regulation and Metabolic Networks

  • Asenjo, J.A.;Ramirez, P.;Rapaport, I.;Aracena, J.;Goles, E.;Andrews, B.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.496-510
    • /
    • 2007
  • This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-a-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an integrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 $(2^3)$ fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.

Degradation of Trichloroethylene by a Growth-Arrested Pseudomonas putida

  • Hahm, Dae-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제3권1호
    • /
    • pp.11-14
    • /
    • 1998
  • A toluene-oxidizing strain of Pseudomanas mendocina KR1 containing toluene-4-mono-oxygenase (TMO) completely degrades TCE with the addition of toluene as a co-substrate in aerobic condition. In order to construct in situ bioremediation system for TCE degradation without any growth-stimulating nutrients or toxic inducer such as toluene, we used the carbon-starvation promoter of Pseudomonas putida MK1 (Kim, Y. et al., J. bacteriol., 1995). Upon entry into the stationary phase due to the deprivation of nutrients, this promoter is strongly induced without further cell growth. The TMO gene cluster (4.5 kb) was spliced downstream of the carbon starvation promoter of Pseudomonas putida MK1, already cloned in pUC19. TMO under the carbon starvation promoter was not expressed in E. coli cells either in stationary phase or exponential phase. For TMO expression in Pseudomonas strains, tmo and carbon starvation promoter region were recloned into a modified broad-host range vector pMMB67HES which was made from pMMB67HE(8.9 kb) by deletion of tac promoter and lacIq (about 1.5 kb). Indigo was produced by TMO under the carbon starvation promoter in a Pseudomonas strain of post-exponential phase on M9 (0.2% glucose and 1mM indole) or LB. 18% of TCE was degraded in 14 hours after entering the stationary phase at the initial concentration of 6.6 ${\mu}$M in liquid phase.

  • PDF

Galleria mellonella 6-Tox Gene, Putative Immune Related Molecule in Lepidoptera

  • Lee, Joon-Ha;Park, Seung-Mi;Chae, Kwon-Seok;Lee, In-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제21권1호
    • /
    • pp.127-132
    • /
    • 2010
  • We have characterized full-length cDNA encoding Gall-6-tox protein, which was cloned from the fat body of the immunized Galleria mellonella larvae. The cloned cDNA of Gall-6-tox consists of 1301 nucleotides and contained an open reading frame of 891 nucleotides corresponding to a protein of 296 residues that includes a putative 16-residue signal sequence and a 280-residue mature peptide with a calculated mass of 30,707.73 Da. The deduced mature peptide contains conserved tandem repeats of six cysteine-stabilized alpha beta ($Cs{\alpha}{\beta}$) motifs, which was detected in scorpion toxins and insect defensins. In the sequence homology search, mature Gall-6-tox showed 34% and 28% amino acid sequence homology with Bomb-6-tox from Bombyx mori and Spod-11-tox from Spodoptera frugiperda, respectively. Gall-6-tox orthologs were only found in Lepidopteran species, indicating that this new immune-related gene family is specific to this insect order. RT-PCR analysis revealed that Gall-6-tox was expressed primarily in the larval fat bodies, hemocytes, and midgut against invading bacteria into hemocoel. Moreover, the expression time course of Gall-6-tox was examined up to 24 h in the fat bodies and midgut after injection of E. coli. Altogether, these results suggest that Gall-6-tox is derived from defensins and Gall-6-tox may play a critical role in Lepidoptera immune system.

Development of a Highly Efficient Protein-Secreting System in Recombinant Lactobacillus casei

  • Kajikawa, Akinobu;Ichikawa, Eiko;Igimi, Shizunobu
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.375-382
    • /
    • 2010
  • The available techniques for heterologous protein secretion in Lactobacillus strains are limited. The aim of the present study was to develop an efficient protein-secretion system using recombinant lactobacilli for various applications such as live delivery of biotherapeutics. For the construction of expression vectors, the Lactobacillus brevis slpA promoter, Lactobacillus casei prtP signal sequence, and mouse IL-10 sequences were used as a model system. Interestingly, the slpA promoter exhibited strong activity in L. casei, contrary to previous observations. In order to stabilize replication of the plasmid in E. coli, a removable terminator sequence was built into the promoter region. For the improvement of secretion efficiency, a DTNSD oligopeptide was added to the cleavage site of signal peptidase. The resulting plasmids provided remarkably efficient IL-10 secretion. Accumulation of the protein in the culture supernatant varied widely according to the pH conditions. By analysis of the secreted protein, formation of homodimers, and biological activity, IL-10 was confirmed to be functional. The presently constructed plasmids could be useful tools for heterologous protein secretion in L. casei.

Cloning and Expression of Cyclodextrin Glycosyltransferase Gene from Paenibacillus sp. T16 Isolated from Hot Spring Soil in Northern Thailand

  • Charoensakdi, Ratiya;Murakami, Shuichiro;Aoki, Kenji;Rimphanitchayakit, Vichien;Limpaseni, Tipaporn
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.333-340
    • /
    • 2007
  • Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower $K_m$ for coupling reaction using cellobiose and cyclodextrins as substrates.

Cloning, Sequencing and Characterization of Acyltransferase Gene Involved in Exopolysaccharide Biosynthesis of Zoogloea ramigera 115SLR

  • Lee Sam-Pin;Troyano Esperanza;Lee Jin-Ho;Kim Hyun-Soo;Sinskey Anthony John
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1163-1168
    • /
    • 2006
  • The recombinant plasmid pLEX2FP complements the mutation in Zoogloea ramigera 115MM1, and the complemented mutant produces an exopolysaccharide that shows higher affinity for the calcofluor dye than the exopolysaccharide from Z. ramigera 115SLR, resulting in higher fluorescence intensity under UV light. A compositional and structural analysis of the exopolysaccharide from Z. ramigera 115MM1 showed that the different fluorescent properties were due to a lower content of acetyl groups when compared with Z. ramigera 115SLR exopolysaccharide. These results were in agreement with a sequence analysis of the gene carried in the plasmid pLEX2FP, which appeared to encode an O-acyltransferase highly homologous to the 3-O-acyltransferase of Streptomyces mycarofaciens. The gene encoding the acyltransferase from Z. ramigera 115SLR was expressed as a GST-fusion protein with 70,000 daltons in E. coli.

Apergillus niger LK 유래의 Epoxide Hydrolase 클로닝 및 특성 분석 (Cloning and Molecular Characterization of Epoxide Hydrolase from Aspergillus niger LK)

  • 이은열;김희숙
    • KSBB Journal
    • /
    • 제16권6호
    • /
    • pp.562-567
    • /
    • 2001
  • Styrene oxide 계열의 라세믹 에폭사이드 기질에 대한 입체선택적 가수분해능이 우수한 Aspergillus nigerr계열의 생촉매를 선발하였고, A.niger LK 유래의 EHase의 기질 특이성을 분석하였다. A. niger LK의 EHase는 benzene ring에 oxirane ring이 직접 연결되어 있는 styrene oxide, p-nitrostyrene oxide 기질에 대해서는 (R)-이성질체, benzene ring과 oxirane ring사이에 ether 등의 연결 chain이 있는 기질에 대해서는 (S)-이 성질체에 대한 입체선택적 가수분해능이 우수하였다. A niger LK의 EHase 유전자를 RT-PCR 방법으로 클로닝하였고, sequencing을 통해 다른 미생물 유래의 EHase와의 sequence identity 분석 등을 통해 특성을 분석하였다. Yeast 유래의 EHase와는 32% 수준의 sequence identity를 보였으며, Agrobacterisum, Corynebacterium 등의 박테리아 유래 EHase와는 identity가 매우 낮은 특성을 보였다. E. coli 숙주에서 발현된 재조합 EHase의 활성은 라세믹 에폭사이드 기질에 대한 입체선택적 가수분해 반응을 통해 확인할 수 있었다. 클러닝된 EHase의 보다 효율적인 발현 연구가 필요하며, 이러한 재조합 EHase는 고부가가치 광학활성 에폭사이드 제조를 위한 생물전환공정 시스템의 생촉매로 응용될 수 있을 것으로 기대된다.

  • PDF

Application of Molecular Biology to Rumen Microbes -Review-

  • Kobayashi, Y.;Onodera, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권1호
    • /
    • pp.77-83
    • /
    • 1999
  • Molecular biological techniques that recently developed, have made it possible to realize some of new attempts in the research field of rumen microbiology. Those are 1) cloning of genes from rumen microorganisms mainly in E. coli, 2) transformation of rumen bacteria and 3) ecological analysis with nonculturing methods. Most of the cloned genes are for polysaccharidase enzymes such as endoglucanase, xylanase, amylase, chitinase and others, and the cloning rendered gene structural analyses by sequencing and also characterization of the translated products through easier purification. Electrotransformation of Butyrivibrio fibrisolvens and Prevotella ruminicola have been made toward the direction for obtaining more fibrolytic, acid-tolerant, depoisoning or essential amino acids-producing rumen bacterium. These primarily required stable and efficient gene transfer systems. Some vectors, constructed from native plasmids of rumen bacteria, are now available for successful gene introduction and expression in those rumen bacterial species. Probing and PCR-based methodologies have also been developed for detecting specific bacterial species and even strains. These are much due to accumulation of rRNA gene sequences of rumen microbes in databases. Although optimized analytical conditions are essential to reliable and reproducible estimation of the targeted microbes, the methods permit long term storage of frozen samples, providing us ease in analytical work as compared with a traditional method based on culturing. Moreover, the methods seem to be promissing for obtaining taxonomic and evolutionary information on all the rumen microbes, whether they are culturable or not.

Evolution of a dextransucrase gene for constitutive and hyper-production and for synthesis of new structure dextran

  • 강희경;김도만;장석상
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.545-549
    • /
    • 2003
  • After irradiation of a cloned dextransucrase gene (dsrB742) with ultrasoft X-ray, an E. coli transformant (pDSRB742CK) was first developed for the expression of an extracellular dextransucrase, having increased activity and the synthesis of a highly branched dextran. Seven nucleotides of the parent gene (dsrB742) were changed in the nucleotide sequences of dsrB742ck. Among them, four nucleotides were changed at the ORF of dsrB742, resulting in a 30 amino acids deletion in the N-terminal of DSRB742 dextransucrase. The activity of DSRB742CK dextransucrase in culture supernatant was approximately 2.6 times higher (0.035 IU/ml) than that of the DSRB742 clone. The pDSRB742CK clone produced DSRB742CK dextransucrase when grown both on a sucrose medium (inducibly) and on a glucose medium (constitutively). The DSRB742 clone did not produce dextran constitutively on a glucose medium. DSRB742CK dextran had 15.6% branching and 2.7-times higher resistance to dextranase hydrolysis compared to DSRB742 dextran. $^{13}C-NMR$ showed that DSRB742CK dextran contained ${\alpha}-(1{\rightarrow}3)$ branch linkages that were not present in DSRB742 dextran.

  • PDF

유전자 재조합 Human galectin-3의 발현과 성상 (Expression and characterization of the recombinant human galectin-3)

  • 김병규;우희종
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.547-554
    • /
    • 1997
  • Galectin-3 is known as an animal ${\beta}$-galactoside-binding lectin charicterized with S-type carbohydrate recognition domain. It plays a role in growth, adherence and movement of cells. It is, also, related to the cell transformation and metastasis of tumor cells. In this study, we have expressed and purified recombinant human galectin-3 (rHgalectin-3) using E coli system and asialofetuin affinity chromatography for the future development of monoclonal antibody to Hgalectin-3, which is suggested as the tumor marker for the gastric and thyroid gland cancers. Expressed protein was confirmed as the Hgalectin-3 by immunoblot with cross-reactive murine monoclonal antibody. Lectin activity and specificity of purified protein were, also, confirmed by the competitive inhibition with galectin-3 specific carbohydrate, lactose. Like physiological galectin-3, lectin activity of the molecule was not changed in nonreduced condition. Dimer formation, furthermore, was observed at high concentration of the protein even in the reduced condition, which is well known in physiological galectin-3. These results showed purified rHgalectin-3 has the same activity and molecular nature compared to the physiological galectin-3.

  • PDF