• 제목/요약/키워드: exposure model evaluation

검색결과 165건 처리시간 0.024초

AN INTEGRATED APPROACH TO RISK-BASED POST-CLOSURE SAFETY EVALUATION OF COMPLEX RADIATION EXPOSURE SITUATIONS IN RADIOACTIVE WASTE DISPOSAL

  • Seo, Eun-Jin;Jeong, Chan-Woo;Sato, Seichi
    • Journal of Radiation Protection and Research
    • /
    • 제35권1호
    • /
    • pp.6-11
    • /
    • 2010
  • Embodying the safety of radioactive waste disposal requires the relevant safety criteria and the corresponding stylized methods to demonstrate its compliance with the criteria. This paper proposes a conceptual model of risk-based safety evaluation for integrating complex potential radiation exposure situations in radioactive waste disposal. For demonstrating compliance with a risk constraint, the approach deals with important exposure scenarios from the viewpoint of the receptor to estimate the resulting risk. For respective exposure situations, it considers the occurrence probabilities of the relevant exposure scenarios as their probability of giving rise to doses to estimate the total risk to a representative person by aggregating the respective risks. In this model, an exposure scenario is simply constructed with three components:radionuclide release, radionuclide migration and environment contamination, and interaction between the contaminated media and the receptor. A set of exposure scenarios and the representative person are established from reasonable combinations of the components, based on a balance of their occurrence probabilities and the consequences. In addition, the probability of an exposure scenario is estimated on the assumption that the initiating external factors influence release mechanisms and transport pathways, and its effect on the interaction between the environment and the receptor may be covered in terms of the representative person. This integrated approach enables a systematic risk assessment for complex exposure situations of radioactive waste disposal and facilitates the evaluation of compliance with risk constraints.

BENZENE AND LEUKEMIA An Epidemiologic Risk Assessment

  • Rinsky Robert A.;Smith Alexander B.;Hornung Richard;Filloon Thomas G.;Young Ronald J.;Okun Andrea H.;Landrigan Philip J.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.651-657
    • /
    • 1994
  • To assess quantitatively the association between benzene exposure and leukemia, we examined the mortality rate of a cohort with occupational exposure to benzene. Cumulative exposure for each cohort member was estimated from historical air-sampling data and, when no sampling data existed, from interpolation on the basis of existing data. The overall standardized mortality ratio (a measure of relative risk multiplied by 100) for leukemia was 337 (95 percent confidence interval, 154 to 641), and that for multiple myeloma was 409 (95 percent confidence interval, 110 to 1047). With stratification according to levels of cumulative exposure, the standardized mortality ratios for leukemia increased from 109 to 322, 1186, and 6637 with increases in cumulative benzene exposure from less than 40 parts per million-years (ppm-years), to 40 to 199, 200 to 399, and 400 or more. respectively. A cumulative benzene exposure of 400 ppm years is equivalent to a mean annual exposure of 10 ppm over a 40-year working lifetime; 10 ppm is the currently enforceable standard in the United States for occupational exposure to benzene. To examine the shape of the exposure-response relation, we performed a conditional logistic-regression analysis, in which 10 controls were matched to each cohort member with leukemia. From this model, it can be calculated that protection from benzene induced leukemia would increase exponentially with any reduction in the permissible exposure limit.

  • PDF

건설업 유해화학물질 노출 모델의 개발 및 검증: Tier-1 노출 모델 (Development and Validation of Exposure Models for Construction Industry: Tier 1 Model)

  • 김승원;장지영;김갑배
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.208-218
    • /
    • 2014
  • Objectives: The major objective of this study was to develop and validate a tier 1 exposure model utilizing worker exposure monitoring data and characteristics of worker activities routinely performed at construction sites, in order to estimate worker exposures without sampling. Methods: The Registration, Evaluation, Authorization and Restriction of Chemicals(REACH) system of the European Union(EU) allows the usage of exposure models for anticipating chemical exposure of manufacturing workers and consumers. Several exposure models have been developed such as Advanced REACH Tools(ART). The ART model is based on structured subjective assessment model. Using the same framework, a tier 1 exposure model has been developed. Worker activities at construction sites have been analyzed and modifying factors have been assigned for each activity. Korean Occupational Safety and Health Agency(KOSHA) accrued work exposure monitoring data for the last 10 years, which were retrieved and converted into exposure scores. A separate set of sampling data were collected to validate the developed exposure model. These algorithm have been realized on Excel spreadsheet for convenience and easy access. Results: The correlation coefficient of the developed model between exposure scores and monitoring data was 0.36, which is smaller than those of EU models(0.6~0.7). One of the main reasons explaining the discrepancy is poor description on worker activities in KOSHA database. Conclusions: The developed tier 1 exposure model can help industrial hygienists judge whether or not air sampling is required or not.

공정 범주에 따른 ECETOC TRA 모델 평가로부터 도출한 한국 작업장 노출 평가 개선 방안 (Enhancement of Occupational Exposure Assessment in Korea through the Evaluation of ECETOC TRA according to PROCs)

  • 김기은;김종운;전현표;김상헌;정연승
    • 한국환경보건학회지
    • /
    • 제45권2호
    • /
    • pp.173-185
    • /
    • 2019
  • Objectives: The objectives of this study are to evaluate the accuracy and precision of exposure model ECETOC TRA v.3.1 by comparing model predictions with repeated exposure measurements in Korean workplaces and to investigate the applicability of ECETOC TRA to Korean workplace exposure assessment in K-REACH. Methods: Measured values and work conditions for 14 kinds of chemicals collected from exposure field surveys conducted at 10 companies in Korea were utilized for this study. All possible process categories (PROCs) considered to be relevant to each work process classification were selected and applied to ECETOC TRA as major determining parameters. In order to quantify the accuracy of the model, the lack of agreement (bias, relative bias, precision) was calculated and the risk ratios for each exposure situation between estimated and measured were also compared. Results: The estimated values varied between five and 25 times according to the PROCs for all exposure situations (ESs) based on tasks/chemicals. The results showed that most of the estimated values were below the measured values, and just 13 of 53 tasks were above the measured values. The overall bias and precision were $-2.91{\pm}1.62$ with ECETOC TRA, and we found that ECETOC TRA showed a low level of conservatism when applied to Korean workplaces, similar to previous studies. Conclusions: This study demonstrates that the existed PROC codes have limitations in fully covering various ESs in Korea. In order to improve the applicability of ECETOC TRA in K-REACH, the addition of new PROCs for Korean industries are necessary.

실내 라돈오염 해석을 위한 2구역 모델의 민감도 및 불확실성 분석 (Sensitivity and Uncertainty Analysis of Two-Compartment Model for the Indoor Radon Pollution)

  • 유동한;이한수;김상준;양지원
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.327-334
    • /
    • 2002
  • The work presents sensitivity and uncertainty analysis of 2-compartment model for the evaluation of indoor radon pollution in a house. Effort on the development of such model is directed towards the prediction of the generation and transfer of radon in indoor air released from groundwater. The model is used to estimate a quantitative daily human exposure through inhalation of such radon based on exposure scenarios. However, prediction from the model has uncertainty propagated from uncertainties in model parameters. In order to assess how model predictions are affected by the uncertainties of model inputs, the study performs a quantitative uncertainty analysis in conjunction with the developed model. An importance analysis is performed to rank input parameters with respect to their contribution to model prediction based on the uncertainty analysis. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor pollution by radon released from groundwater.

PhATETM 모형을 적용한 금강수계 중 의약물질 농도 추정 (Predicting Environmental Concentrations of Selected Pharmaceuticals Using the PhATETM Model in Keum-River, Korea)

  • 임득순;박정임
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.45-52
    • /
    • 2009
  • In recent years, pharmaceuticals in the aquatic environment have become a matter of increasing public concern. Environmental risk assessment (ERA), including an exposure assessment, is considered the best scientifically based approach for evaluating the potential effects of pharmaceuticals on ecosystems. Computerized exposure models constitute an important tool in predicting environmental exposures of pharmaceuticals. This paper presents the applicability of an exposure model by comparing measured data of selected pharmaceuticals with predicted environmental concentrations from an exposure model. $PhATE^{TM}$ (Pharmaceutical Assessment and Transport Evaluation) model developed by the Pharmaceutical Research and Manufacturers of America (PhRMA) was adapted to run simulations for the Keum River. A set of 7 pharmaceuticals of high production in Korea was modeled. The PECs generated by the $PhATE^{TM}$ model that were then compared to the measured concentrations. The $PhATE^{TM}$ model predicted concentrations for 7 pharmaceuticals including acetaminophen, acetylsalicylic acid, erythromycin, ibuprofen, lincomycin, mefenamic acid, and naproxen were in good agreement with actual measured concentrations, which demonstrated the utility of $PhATE^{TM}$ as a predictive tool. In conclusion, $PhATE^{TM}$, although it does not intend to accurately represent reality, could be utilized for rapid predictions of the environmental concentrations of pharmaceuticals.

업종별 방사선작업종사자 피폭 기록 다각형 모델 분석 연구 (Polygonal Model Analysis on Occupational Exposure Record of Radiation Workers by Work Field)

  • 박제완;한지영;김용민
    • 한국방사선학회논문지
    • /
    • 제17권2호
    • /
    • pp.277-284
    • /
    • 2023
  • 작업환경에 따라 방사선학적 위험성이 상이하므로 해당 업종 환경에 대한 분석을 통해 방호 수단과 정책을 개발해야 한다. 방사선을 이용하는 업종 분야에서의 특성을 평가하는 것은 해당 업종의 수치만을 보는 것이 아니라 다른 업종과의 비교 분석을 통해 수행되어야 한다. 본 연구는 업종별 방사선 피폭 기록 비교를 위해 부처별 종사자 피폭 기록으로부터 평가 인자를 도출하고 이를 상대적으로 평가할 수 있는 다각형 모델을 개발하여 8개 방사선 이용 업종에 대해 적용하였다. 2020년 방사선 피폭 기록을 바탕으로 다각형 모델을 적용하여 방사선 업종의 피폭 기록을 기반으로 특성을 비교 평가하였다. 이를 통해 다각형 모델의 유용성을 확인하였으며 업종에 대한 방호 정책 방안을 제안하였다.

원전 코호트 연구의 적정 대상규모와 검정력 추정 (Power Estimation and Follow-Up Period Evaluation in Korea Radiation Effect and Epidemiology Cohort Study)

  • 조인성;송민교;최윤희;이충민;안윤옥
    • Journal of Preventive Medicine and Public Health
    • /
    • 제43권6호
    • /
    • pp.543-548
    • /
    • 2010
  • Objectives: The objective of this study was to calculate sample size and power in an ongoing cohort, Korea radiation effect and epidemiology cohort (KREEC). Method: Sample size calculation was performed using PASS 2002 based on Cox regression and Poisson regression models. Person-year was calculated by using data from '1993-1997 Total cancer incidence by sex and age, Seoul' and Korean statistical informative service. Results: With the assumption of relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, sample size calculation was 405 events based on a Cox regression model. When the relative risk was assumed to be 1.5 then number of events was 170. Based on a Poisson regression model, relative risk=1.3, exposure:non-exposure=1:2 and power=0.8 rendered 385 events. Relative risk of 1.5 resulted in a total of 157 events. We calculated person-years (PY) with event numbers and cancer incidence rate in the nonexposure group. Based on a Cox regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, 136 245PY was needed to secure the power. In a Poisson regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, person-year needed was 129517PY. A total of 1939 cases were identified in KREEC until December 2007. Conclusions: A retrospective power calculation in an ongoing study might be biased by the data. Prospective power calculation should be carried out based on various assumptions prior to the study.

Establishment of Acceptable Daily Intakes (ADIs) and Risk Assessment for Ephedrine, Menichlopholan, Anacolin, and Etisazole Hydrochloride

  • Min Ji Kim;Ji Young Kim;Jang Duck Choi;Guiim Moon
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.261-275
    • /
    • 2022
  • BACKGROUND: Prior to implementing a positive list system (PLS), there is a need to establish acceptable daily intake (ADI) and maximum residue limit (MRL) for veterinary drugs that have been approved a few decades ago in South Korea. On top of that, chronic dietary exposure assessment of veterinary drug residues should be performed to determine whether the use of these veterinary drugs would cause health concerns or not. METHODS AND RESULTS: To establish the ADI, the relevant toxicological data were collected from evaluation reports issued by international organizations. A slightly modified global estimate of chronic dietary exposure (GECDE) model was employed in the exposure assessment owing to the limited residual data. Therefore, only the ADI of ephedrine was established due to insufficient data for the other veterinary drugs. Thus, instead of ADI, the threshold of toxicological concern (TTC) value was used for the other drugs. Lastly, the hazard index (HI) was calculated, except for etizazole hydrochloride, due to the potential of mutagenicity. CONCLUSION(S): The HI values of ephedrine, menichlopholan, and anacolin were found to be as high as 6.4%, suggesting that chronic dietary exposure to the residues from these uses was unlikely to be a public health concern. Further research for exposure assessment of veterinary drug residues should be performed using up-todate Korean national health and nutrition examination survey (KNHANES) food consumption data. In addition, all relevant available data sources should be utilized for identifying the potentials of toxicity.

작업공정 및 활동에 따른 국내 작업장 납 노출특성 평가 (Evaluation of Lead Exposure Characteristics by Process Category and Activity)

  • 이도희;이나루
    • 한국산업보건학회지
    • /
    • 제33권1호
    • /
    • pp.19-33
    • /
    • 2023
  • Objectives: The purpose of this study is to systematically identify situations where exposure levels are expected to be high by structuring domestic lead measurement data according to exposure processes and activities. Methods: Occupational exposure data on lead was collected from the results of the Evaluation of Reliability of Working Environment Measurement conducted by the government from 2019 to 2020. Lead exposure characteristics were analyzed by PROC (process category) and activity. The Risk Characterization Ratios (RCRs) of five PROCs according to ventilation type and lead content were evaluated using the MEASE (Metal's EASE) model. Results: The exposure data on lead (n=250) was classified into 12 PROCs and 12 activities, with an average concentration of 0.040 mg/m3 and about 14% exceeding the occupational exposure limit of 0.05 mg/m3. Processes with high exposure levels were PROC 7 (industrial spraying), 23 (open processing and transfer operations of molten metal), 24 (mechanical treatment), 25 (welding), and 26 (handling of powder containing lead). The results of evaluating RCR for the five PROCs were greater than 1 or close to 1 even if local exhaust ventilation was used. Conclusions: There is a possibility that the concentration of exposure is high in the casting and tapping of molten metal containing lead, mechanical treatment such as fracturing and abrasion, handling of powder, spraying, battery manufacturing, and waste battery recycling processes. It is necessary to implement chemical management policies for workplaces with such processes.