• 제목/요약/키워드: exposure model

검색결과 1,405건 처리시간 0.029초

공정 범주에 따른 ECETOC TRA 모델 평가로부터 도출한 한국 작업장 노출 평가 개선 방안 (Enhancement of Occupational Exposure Assessment in Korea through the Evaluation of ECETOC TRA according to PROCs)

  • 김기은;김종운;전현표;김상헌;정연승
    • 한국환경보건학회지
    • /
    • 제45권2호
    • /
    • pp.173-185
    • /
    • 2019
  • Objectives: The objectives of this study are to evaluate the accuracy and precision of exposure model ECETOC TRA v.3.1 by comparing model predictions with repeated exposure measurements in Korean workplaces and to investigate the applicability of ECETOC TRA to Korean workplace exposure assessment in K-REACH. Methods: Measured values and work conditions for 14 kinds of chemicals collected from exposure field surveys conducted at 10 companies in Korea were utilized for this study. All possible process categories (PROCs) considered to be relevant to each work process classification were selected and applied to ECETOC TRA as major determining parameters. In order to quantify the accuracy of the model, the lack of agreement (bias, relative bias, precision) was calculated and the risk ratios for each exposure situation between estimated and measured were also compared. Results: The estimated values varied between five and 25 times according to the PROCs for all exposure situations (ESs) based on tasks/chemicals. The results showed that most of the estimated values were below the measured values, and just 13 of 53 tasks were above the measured values. The overall bias and precision were $-2.91{\pm}1.62$ with ECETOC TRA, and we found that ECETOC TRA showed a low level of conservatism when applied to Korean workplaces, similar to previous studies. Conclusions: This study demonstrates that the existed PROC codes have limitations in fully covering various ESs in Korea. In order to improve the applicability of ECETOC TRA in K-REACH, the addition of new PROCs for Korean industries are necessary.

제철소 근로자의 벤젠/톨루엔/크실렌 국소환경 측정을 이용한 총 노출 예측 (Estimation of Total Exposure to Benzene, Toluene and Xylene by Microenvironmental Measurements for Iron Mill Workers)

  • 김영희;양원호;손부순
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.359-364
    • /
    • 2007
  • The aim of this study were to assess the personal exposure to volatile organic compounds (VOCs) and to estimate the personal exposure using time-weighted average model. Three target VOCs (benzene, toluene, xylene) were analyzed in personal exposure samples and residential indoor, residential outdoor and workplace indoor microenvironments samples in the iron mill 30 workers during working 5 days. Personal exposure to VOCs significantly correlated with workplace concentration p<0.05), suggesting workplace had strong source and major contribution to personal exposure. Personal exposure could be estimated with time activity pattern and time weighted average (TWA) model of residential indoor and workplace concentrations measured. Time weighted mean microenvironments concentrations were close approximately of personal exposure concentrations. Total exposure for participants can be estimated by TWA with microenvironments measurements and time activity pattern.

원전 코호트 연구의 적정 대상규모와 검정력 추정 (Power Estimation and Follow-Up Period Evaluation in Korea Radiation Effect and Epidemiology Cohort Study)

  • 조인성;송민교;최윤희;이충민;안윤옥
    • Journal of Preventive Medicine and Public Health
    • /
    • 제43권6호
    • /
    • pp.543-548
    • /
    • 2010
  • Objectives: The objective of this study was to calculate sample size and power in an ongoing cohort, Korea radiation effect and epidemiology cohort (KREEC). Method: Sample size calculation was performed using PASS 2002 based on Cox regression and Poisson regression models. Person-year was calculated by using data from '1993-1997 Total cancer incidence by sex and age, Seoul' and Korean statistical informative service. Results: With the assumption of relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, sample size calculation was 405 events based on a Cox regression model. When the relative risk was assumed to be 1.5 then number of events was 170. Based on a Poisson regression model, relative risk=1.3, exposure:non-exposure=1:2 and power=0.8 rendered 385 events. Relative risk of 1.5 resulted in a total of 157 events. We calculated person-years (PY) with event numbers and cancer incidence rate in the nonexposure group. Based on a Cox regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, 136 245PY was needed to secure the power. In a Poisson regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, person-year needed was 129517PY. A total of 1939 cases were identified in KREEC until December 2007. Conclusions: A retrospective power calculation in an ongoing study might be biased by the data. Prospective power calculation should be carried out based on various assumptions prior to the study.

Comparative Study of Coupling Factors for Assessment of Low-Frequency Magnetic Field Exposure

  • Shim, Jae-Hoon;Choi, Min-Soo;Jung, Kyu-Jin;Kwon, Jong-Hwa;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • 제21권4호
    • /
    • pp.516-523
    • /
    • 2016
  • In this paper, coupling factors are calculated based on numerical analysis in order to assess various non-uniform low-frequency magnetic field exposure situations. Two types of non-uniform magnetic field sources are considered; circular coil and parallel wires with balanced currents. For each magnetic field source, source current values are determined so that reference magnetic field magnitude can be measured at the specified point on the human model. Various exposure situations are investigated by changing parameters such as the distance between source and human model, radius of circular coil, and the gap between parallel wires. For equivalent human models, prolate spheroid model and simplified human model from IEC 62311 standard are used. The calculated coupling factor values are compared with those obtained by 2D uniform disk human model, and the dependence of coupling factor on the choice of equivalent human model is analyzed.

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

레이저 빛의 경사노광 시 광 경화성 수지의 경화형상 예측 (Prediction of Photopolymer Solidification for Inclined Laser Beam Exposure)

  • 김영현;임종선;유규상;이인환;고태조
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.98-104
    • /
    • 2010
  • It has been reported that the photopolymer solidification in the stereolithogrpahy process is mainly depend on the laser exposure conditions such as laser power and scanning speed. However, these researches were focused on the vertical laser exposure onto the surface of the photopolymer. In this research, we developed a mathematical model for the photopolymer solidification under the inclined laser beam exposure. Using the developed mathematical model, the photopolymer solidifications were simulated varying inclined laser exposure conditions. Developed mathematical model was in good agreement with the experimental result. This research can be applied to improve the surface roughness in the stereolithogrpahy process.

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E2호
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

노출평가 방법론에 대한 과거와 현재, 그리고 미래 (Review of Exposure Assessment Methodology for Future Directions)

  • 곽수영;이기영
    • 한국환경보건학회지
    • /
    • 제48권3호
    • /
    • pp.131-137
    • /
    • 2022
  • Public interest has been increasing the focus on the management of exposure to pollutants and the related health effects. This study reviewed exposure assessment methodologies and addressed future directions. Exposure can be assessed by direct (exposure monitoring) or indirect approaches (exposure modelling). Exposure modelling is a cost-effective tool to assess exposure among individuals, but direct personal monitoring provides more accurate exposure data. There are several population exposure models: stochastic human exposure and dose simulation (SHEDS), air pollutants exposure (APEX), and air pollution exposure distributions within adult urban population in Europe (EXPOLIS). A South Korean population exposure model is needed since the resolution of ambient concentrations and time-activity patterns are country specific. Population exposure models could be useful to find the association between exposure to pollutants and adverse health effects in epidemiologic studies. With the advancement of sensor technology and the internet of things (IoT), exposure assessment could be applied in a real-time surveillance system. In the future, environmental health services will be useful to protect and promote human health from exposure to pollutants.

신경망을 이용한 휴대전화에 의한 RF 노출 평가 모델의 개발 (Development of a Model to Evaluate RF Exposure Level from Cellular Phone using a Neural Network)

  • 김수찬;남기창;안선희;김덕원
    • 한국전자파학회논문지
    • /
    • 제15권10호
    • /
    • pp.969-976
    • /
    • 2004
  • 이동통신 가입자가 증가함으로 인하여 휴대전화로부터 유발되는 전자파 노출 유해성 여부에 대한 논란이 끊임없이 제기되면서 이와 관련한 연구가 국제적으로 활발하게 이루어지고 있다. 휴대전화 사용에 관한 정보로 사용자 본인이 정량적인 전자파 노출량을 직접 알 수 있다면 매우 이상적일 것이다. 그러나 인체에 노출되는 전자파의 양을 직접적으로 측정하는 것은 매우 어렵기 때문에 정확한 노출량을 아는 것은 쉽지 않다. 따라서 본 연구에서는 국내외에서 선행된 연구 결과 및 쉽게 알 수 있는 휴대전화의 모델에 관한 간단한 정보, 사용경향을 이용하여 개인의 휴대전화 전자파의 노출 정도를 제시해 보고자 한다. 휴대전화 사용에 따른 노출 정도를 제시하기 위하여 1일 평균 통화시간, 총 사용기간에 관한 정보와 선행된 연구 결과들을 기반으로 휴대전화 사용시 이격거리와 기울기, 핸즈프리와 안테나의 사용 여부, 휴대전화의 SAR(Specific Absorption Rate), 플립 혹은 폴더형인지 등에 관한 인자들을 이용하였다. 이 인자들을 신경망 회로를 이용하여 노출 정도를 간접적으로 평가하여 사용자에게 제시해 보고자 하였다.

CalTOX 모델을 이용한 대산 석유화학단지의 활동단계에 따른 벤젠 흡입 노출평가 (Prediction of Inhalation Exposure to Benzene by Activity Stage Using a Caltox Model at the Daesan Petrochemical Complex in South Korea)

  • 이진헌;이민우;박창용;박상현;송영호;김옥;신지훈
    • 한국환경보건학회지
    • /
    • 제48권3호
    • /
    • pp.151-158
    • /
    • 2022
  • Background: Chemical emissions in the environment have rapidly increased with the accelerated industrialization taking place in recent decades. Residents of industrial complexes are concerned about the health risks posed by chemical exposure. Objectives: This study was performed to suggest modeling methods that take into account multimedia and multi-pathways in human exposure and risk assessment. Methods: The concentration of benzene emitted at industrial complexes in Daesan, South Korea and the exposure of local residents was estimated using the Caltox model. The amount of human exposure based on inhalation rate was stochastically predicted for various activity stages such as resting, normal walking, and fast walking. Results: The coefficient of determination (R2) for the CalTOX model efficiency was 0.9676 and the root-mean-square error (RMSE) was 0.0035, indicating good agreement between predictions and measurements. However, the efficiency index (EI) appeared to be a negative value at -1094.4997. This can be explained as the atmospheric concentration being calculated only from the emissions from industrial facilities in the study area. In the human exposure assessment, the higher the inhalation rate percentile value, the higher the inhalation rate and lifetime average daily dose (LADD) at each activity step. Conclusions: Prediction using the Caltox model might be appropriate for comparing with actual measurements. The LADD of females was higher ratio with an increase in inhalation rate than those of males. This finding would imply that females may be more susceptible to benzene as their inhalation rate increases.