• Title/Summary/Keyword: exposure matrix

Search Result 258, Processing Time 0.028 seconds

Construction of an Exposure Matrix Using a Risk Assessment of Industries and Processes Involving Dichloromethane (작업환경측정 자료를 활용한 Dichloromethane 노출 매트릭스 구축에 대한 연구)

  • Lee, Jae-Hwan;Park, Dong-Uk;Hong, Sung-Chul;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.391-401
    • /
    • 2010
  • A reduction in risk of occupational exposure to chemical hazards within the workplace has been the focus of attention both through industry initiatives and legislation. The aims of this study were to develop an exposure matrix by industry and process, and to apply this matrix to control the risk of occupational exposure to Dichloromethane (DCM). The exposure matrix is a tool to convert information on industry and process into information on occupational risk. The exposure matrix comprised industries and processes involving DCM, based on an exposure database provided by KOSHA (the Korean Occupational Safety and Health Agency), which was gathered from a workplace hazards evaluation program in Korea. The risk assessment of the exposure matrix was performed using Hallmark risk assessment tool. The results of the risk assessment were indicated by a Danger Value (DV) calculated from the combination of hazard rating (HR), duration of use rating (DUR), and risk probability rating (RPR) of exposure to the chemical, and were divided into four control bands which were related to control measures. The applicability of the risk assessment of the exposure matrix was evaluated by a field study, and survey of the employees of the exposure matrix groups. Among 45 industries examined, this study found that greater attention should be paid to two industries: the manufacture of other optical instruments and photographic equipment, and the manufacture of printing ink, and to one process among 47 examined, the packing process in the manufacture of printing ink, because these were regarded as carrying the highest risk. This tool of a risk assessment for the exposure matrix can be applied as a general exposure information system for hazard control, risk quantification, setting the occupational exposure limit, and hazard surveillance. The exposure matrix includes workforce data, and it provides information on the numbers of exposed workers in Korea by agent, occupation, and level of exposure and risk.

Fabrication of Three-Dimensional Curved Microstructures by Two-Photon Polymerization Employing Multi-Exposure Voxel Matrix Scanning Method (다중조사 복셀 매트릭스 스캐닝법을 이용한 이광자 중합에 의한 마이크로 3차원 곡면형상 제작)

  • Lim, Tae-Woo;Park, Sang-Hu;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.418-421
    • /
    • 2005
  • Three-dimensional (3D) microfabrication process using two-photon polymerization (TPP) is developed to fabricate the curved microstructures in a layer, which can be applied potentially to optical MEMS, nano/micro-devices, etc. A 3D curved structure can be expressed using the same height-contours that are defined by symbolic colors which consist of 14 colors. Then, the designed bitmap figure is transformed into a multi-exposure voxel matrix (MVM). In this work a multi-exposure voxel matrix scanning method is used to generate various heights of voxels according to each laser exposure time that is assigned to the symbolic colors. An objective lens with a numerical aperture of 1.25 is employed to enlarge the variation of a voxel height in the range of 1.2 to 6.4 um which can be controlled easily using the various exposure time. Though this work some 3D curved micro-shapes are fabricated directly to demonstrate the usefulness of the process without a laminating process that is generally required in a micro-stereolithography process.

A Study on Selecting Personal Protective Equipment for Listed Hazardous Chemicals (2): Analysis Using an Exposure Risk Matrix (사고대비물질 개인보호구 선정에 관한 연구(2): 노출위해성 매트릭스에 의한 분석)

  • Han, Don-Hee;Chung, Sang-Tae;Kim, Jong-Il;Cho, Yong-Sung;Lee, Chung-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.430-437
    • /
    • 2016
  • Objectives: The new Chemical Control Act from the Korean Ministry of Environment (2014-259) simply states only in basic phrases that every worker handling the listed chemicals should wear personal protective equipment (PPE) and does not consider the different hazard characteristics of particular chemicals or work types. The purpose of this study was to produce an exposure risk matrix and assign PPE to the categories of this matrix, which would be useful for revising the act to suggest PPE to suit work types or situations. Methods: An exposure risk matrix was made using hazard ranks of chemicals and workplace exposure risks in the previous study. For the 20 categories of exposure risk matrix PPE, levels A, B, C, D as classified by OSHA/EPA were assigned. After 69 hazardous chemicals were divided into 11 groups according to their physiochemical characteristics, respirators, chemical protective clothing (CPC), gloves and footwear were suggested on the basis of the assigned PPE levels. Results: PPE table sheets for the 11 groups were made on the basis of work types or situations. Full facepiece or half-mask for level C was recommended in accordance with the exposure risk matrix. Level A was, in particular, recommended for loading or unloading work. Level A PPE should be worn in an emergency involving hydrogen fluoride because of the number of recent related accidents in Korea. Conclusion: PPE assignment according to the exposure risk matrix made by chemical hazards and work type or situation was suggested for the first time. Each type of PPE was recommended for the grouped chemicals. The research will be usefully used for the revision of the Chemical Control Act in Korea.

A Study on Selecting Personal Protective Equipment for Listed Hazardous Chemicals (1): Analysis of Hazard Ranks and Workplace Exposure Risks (사고대비물질 개인보호구 선정에 관한 연구(1): 물질유해성 및 작업위해성 분석)

  • Han, Don-Hee;Chung, Sang-Tae;Kim, Jong-Il;Cho, Yong-Sung;Lee, Chung-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.419-429
    • /
    • 2016
  • Objectives: According to the new Chemical Control Act from the Korean Ministry of Environment (2014-259), workers handling hazardous chemicals should wear personal protective equipment (PPE). However the act simply states in basic phrases that every worker handling one or more of the 69 listed chemicals should wear PPE and does not consider the unique hazard characteristics of chemicals and work types. The main purpose of this study is to provide basic data to revise the act to suit particular work processes and situations. Methods: The hazard rank of the substances was classified based on hazardous characteristics such as LC50 and vapor pressure using matrix analysis. The workplace exposure risk of the substances was also determined through a matrix analysis based on the previously determined hazard ranks and the demands of manual handling together with the likelihood of accident frequency of the operation combined with the exposure of workers during spill accidents. Results: To meet the demands for developing subsequent guidelines for the risk-based application of PPE in hazardous workplaces, this study sorted the 69 listed chemicals into five hazardous categories based on their LC50 and vapor pressures, and also assigned exposure categories according to exposure vulnerability for various types of work which are frequently performed throughout the life cycle of the chemicals. Conclusion: In the next study, an exposure risk matrix will be produced using the hazard rank of chemicals and workplace exposure risk, and then PPE will be selected to suit the categories of the exposure risk matrix.

Optical Microscopic Image Analysis for Damaged GFRP Rebar by Alkali and High Temperature Exposures (알칼리와 고온노출에 의한 GFRP 보강근 손상에 대한 현미경분석 연구)

  • Bae, Jung-Myung;Moon, Do-Young;Park, Cheol-Woo;Park, Young-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.53-59
    • /
    • 2017
  • In this experimental study, the characteristic of damages on GFRP rebar exposed to high temperature only and immerged in alkaline solution after the exposure to high temperature was analyzed through microscopic image analysis. The found microcrack and pores in resin matrix were quantitatively compared if there was effect of pre-exposure to high temperature. The damages, such as microcrack and pores in resin matrix, by alkali exposure were mainly found in rebar surface. On the other hand, the pores caused by high temperatures were extensively found in a section and had greater width than those caused by the alkali exposure. In results of the quantitative comparison, the accumulated length and widths of microcrack and pores in resin matrix in pre-exposed GFRP rebar to high temperature were respectively 1.5 and 1.4 times of those in the GFRP rebar only immerged in alkali solution. Therefore, the deterioration of resin matrix by the alkali exposure could be accelerated due to the pre-exposure to high temperature.

Reconstruction of the Korean Asbestos Job Exposure Matrix

  • Kang, Dongmug;Jung, Saemi;Kim, Yun-Ji;Kim, Juyoung;Choi, Sangjun;Kim, Se Yeong;Kim, Youngki
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.74-95
    • /
    • 2021
  • Background: A job-exposure matrix (JEM) is an important surrogate indicator to evaluate past exposure levels. Although a Korean asbestos JEM has been constructed previously, this JEM includes only a few industrial and occupational groups. This study aimed to reconstruct the JEM by integrating the latest organized data to improve its utility. Methods: We used recent Korean standard industry and occupation codes and extracted 36 articles from a systematic literature review to initiate the reconstruction of the previous Korean asbestos JEM. The resulting data consisted of 141 combinations of industrial and occupational groups. Data from the Netherlands's JEM were also reviewed and categorized into 70 industrial and 117 occupational groups by matching with the Korean data. We also utilized Germany's data, which consisted of 10 industrial and 14 occupational groups. Results: The reconstructed Korean asbestos JEM had 141 combinations of industries and occupations. The time periods are from the 1980s to the 2000s in 10-year intervals. Most of the data were distributed between the 1990s and the 2000s. Occupations with high exposure to asbestos included knitting and weaving machine operators, automobile mechanics or assemblers, ship mechanics or assemblers, mineral ore and stone products processing mechanics, and metal casting machine operators or mold makers. Conclusions: The reconstructed Korean asbestos JEM has expanded the type and duration of the occupational groups of the previous JEM and can serve as an important reference tool for evaluating asbestos exposure and designing compensation and prevention policies in Korea.

Developing Asbestos Job Exposure Matrix Using Occupation and Industry Specific Exposure Data (1984-2008) in Republic of Korea

  • Choi, Sangjun;Kang, Dongmug;Park, Donguk;Lee, Hyunhee;Choi, Bongkyoo
    • Safety and Health at Work
    • /
    • v.8 no.1
    • /
    • pp.105-115
    • /
    • 2017
  • Background: The goal of this study is to develop a general population job-exposure matrix (GPJEM) on asbestos to estimate occupational asbestos exposure levels in the Republic of Korea. Methods: Three Korean domestic quantitative exposure datasets collected from 1984 to 2008 were used to build the GPJEM. Exposure groups in collected data were reclassified based on the current Korean Standard Industrial Classification ($9^{th}$ edition) and the Korean Standard Classification of Occupations code ($6^{th}$ edition) that is in accordance to international standards. All of the exposure levels were expressed by weighted arithmetic mean (WAM) and minimum and maximum concentrations. Results: Based on the established GPJEM, the 112 exposure groups could be reclassified into 86 industries and 74 occupations. In the 1980s, the highest exposure levels were estimated in "knitting and weaving machine operators" with a WAM concentration of 7.48 fibers/mL (f/mL); in the 1990s, "plastic products production machine operators" with 5.12 f/mL, and in the 2000s "detergents production machine operators" handling talc containing asbestos with 2.45 f/mL. Of the 112 exposure groups, 44 groups had higher WAM concentrations than the Korean occupational exposure limit of 0.1 f/mL. Conclusion: The newly constructed GPJEM which is generated from actual domestic quantitative exposure data could be useful in evaluating historical exposure levels to asbestos and could contribute to improved prediction of asbestos-related diseases among Koreans.

Mesothelioma in Sweden: Dose-Response Analysis for Exposure to 29 Potential Occupational Carcinogenic Agents

  • Plato, Nils;Martinsen, Jan I.;Kjaerheim, Kristina;Kyyronen, Pentti;Sparen, Par;Weiderpass, Elisabete
    • Safety and Health at Work
    • /
    • v.9 no.3
    • /
    • pp.290-295
    • /
    • 2018
  • Background: There is little information on the dose-response relationship between exposure to occupational carcinogenic agents and mesothelioma. This study aimed to investigate this association as well as the existence of agents other than asbestos that might cause mesothelioma. Methods: The Swedish component of the Nordic Occupational Cancer (NOCCA) study consists of 6.78 million individuals with detailed information on occupation. Mesothelioma diagnoses recorded in 1961-2009 were identified through linkage to the Swedish Cancer Registry. We determined cumulative exposure, time of first exposure, and maximum exposure intensity by linking data on occupation to the Swedish NOCCA job-exposure matrix, which includes 29 carcinogenic agents and corresponding exposure for 283 occupations. To assess the risk of mesothelioma, we used conditional logistic regression models to estimate hazard ratios and 95% confidence intervals. Results: 2,757 mesothelioma cases were identified in males, including 1,416 who were exposed to asbestos. Univariate analyses showed not only a significant excess risk for maximum exposure intensity, with a hazard ratio of 4.81 at exposure levels 1.25-2.0 fb/ml but also a clear dose-response effect for cumulative exposure with a 30-, 40-, and 50-year latency time. No convincing excess risk was revealed for any of the other carcinogenic agents included in the Swedish NOCCA job-exposure matrix. Conclusion: When considering asbestos exposure, past exposure, even for short periods, might be enough to cause mesothelioma of the pleura later in life.

A Pilot Establishment of the Job-Exposure Matrix of Lead Using the Standard Process Code of Nationwide Exposure Databases in Korea

  • Ju-Hyun Park;Sangjun Choi;Dong-Hee Koh;Dae Sung Lim;Hwan-Cheol Kim;Sang-Gil Lee;Jihye Lee;Ji Seon Lim;Yeji Sung;Kyoung Yoon Ko;Donguk Park
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • Background: The purpose of this study is to construct a job-exposure matrix for lead that accounts for industry and work processes within industries using a nationwide exposure database. Methods: We used the work environment measurement data (WEMD) of lead monitored nationwide from 2015 to 2016. Industrial hygienists standardized the work process codes in the database to 37 standard process and extracted key index words for each process. A total of 37 standardized process codes were allocated to each measurement based on an automated key word search based on the degree of agreement between the measurement information and the standard process index. Summary statistics, including the arithmetic mean, geometric mean, and 95th percentile level (X95), was calculated according to industry, process, and industry process. Using statistical parameters of contrast and precision, we compared the similarity of exposure groups by industry, process, and industry process. Results: The exposure intensity of lead was estimated for 583 exposure groups combined with 128 industry and 35 process. The X95 value of the "casting" process of the "manufacture of basic precious and non-ferrous metals" industry was 53.29 ㎍/m3, exceeding the occupational exposure limit of 50 ㎍/m3. Regardless of the limitation of the minimum number of samples in the exposure group, higher contrast was observed when the exposure groups were by industry process than by industry or process. Conclusion: We evaluated the exposure intensities of lead by combination of industry and process. The results will be helpful in determining more accurate information regarding exposure in lead-related epidemiological studies.

The Effect of Exposure to Mixed Organic Solvents on Lipid Peroxidation in Ship Building Painters

  • Park, Jun-Ho;Cha, Bong-Suk;Chang, Sei-Jin;Koh, Sang-Baek;Eom, Ae-Yong;Lee, Kang-Myeung;Jung, Min-Ye;Choi, Hong-Soon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.360-365
    • /
    • 2008
  • In the last several years, studies on the association of oxidative stress damage with exposure in the work place have been conducted. Xenobiotics create an imbalance of the homeostasis between oxidant molecules and antioxidant defense. By monitoring oxidative stress biomarkers, information was obtained on damages induced by oxidative stress and the toxicity of xenobiotics. In the present study, a Job Exposure Matrix (JEM) was constructed using the data from the Working Environment Measurement (WEM) of painters in the shipyard industry from the past 3 years to assess the exposure status. Additionally, by measuring the concentration of urinary malondialdehyde (MDA), the effect of lipid peroxidation was examined. The subjects consisted of 68 workers who were exposed to mixed organic solvents in the painting process and 25 non-exposure controls. The exposure indices of the exposure groups were significantly different (sprayer: 0.83, touchup: 0.54, assistant: 0.13, P<0.05). The urinary MDA concentration of the exposure group was 48.60${\pm}$ 39.23 ${\mu}mol$/mol creatinine, which was significantly higher than 18.03${\pm}$16.33 ${\mu}mol$/mol creatinine of the control group (P<0.05). From the multiple regression analysis of urinary MDA, the regression coefficient for exposure grade was statistically significant. In future studies, evaluation of the antioxidant levels of subjects should be performed simultaneously with quantitative exposure measurements.