• Title/Summary/Keyword: exposure assessment, microenvironment

Search Result 5, Processing Time 0.024 seconds

Affecting Factors of Personal Exposure to Toluene according to Sociodemographic Characterization and Time-activity Pattern (사회·인구학적 요인과 시간활동양상에 따른 톨루엔 개인노출의 영향요인 분석)

  • Jung, Soon-Won;Lee, Seok-Yong;Kim, Hyun jeong;Choi, Wookhee;Kim, Suejin;Yu, Seungdo;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • Objectives: Exposure to hazardous air pollutants could be affected by sociodemographic factors such as age, gender and more. Information on time spent in microenvironments has a critical role in exposure assessment. The purpose of this study was to analyze the exposure pathways which influence personal exposure through time-activity patterns and sociodemographic factors. Methods: A total of 379 subjects were collected from the second term of the Korean National Environmental Health Survey. A questionnaire survey in relation to sociodemographic factors and a time-activity diary were carried out for personal exposure to toluene. Focusing on personal exposure to toluene, factors affecting personal exposure were analyzed using multiple regression analysis. Results: Participants spent their time in an indoor house for $16.8{\pm}4.0hr$, workplace or school $2.3{\pm}3.5hr$, and other indoor $2.1{\pm}2.2hr$. Sociodemographic factors were significantly different among each personal exposure and microenvironment. Time of staying at an office turned out to be a main factor from point of exposure in exposure pathway using multiple regression analysis. As a result, this means that exposure may be different according to the time of staying in each microenvironment. Conclusions: Personal exposure to air pollutants might be decided by time-activity pattern indicating when, where, and which activities people pursue, as well as individual sociodemographic factors.

Assessment of Personal Exposure to Nitrogen Dioxide in Primary Schoolchildren

  • Cho Yong-Sung;Lee Jong-Tae;Kim Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • This study was designed to assess the level of nitrogen dioxide from several microenvironments including inside the home, outdoors near the home, inside the school, outdoors near the school, and on the road for 42 primary schoolchildren during the month of December 2002 in Seoul, Korea. The average personal, indoor, outdoor $NO_2$ levels, and indoor/outdoor ratio were 45.08 ppb, 27.89 ppb, 30.96 ppb, and 0.89, respectively. The indoor $NO_2$ concentrations were significantly associated with the presence of a smoker with a gas stove. The estimated personal $NO_2$ exposure using time-weighted average equation of $34.64{\pm}5.29$ ppb was significantly lower than the measured personal exposure of $45.08{\pm}5.50$ ppb. Our results indicate that indoor $NO_2$ levels were associated with the presence of a smoker and a gas stove. Moreover, personal $NO_2$ exposure with a gas stove in the house was significantly higher than those without a gas stove.

Exposure Assessment of Extremely Low Frequency Magnetic Fields by variable exposure matrices for the Selected Primary Schoolchildren Living Nearby and Away from a Overhead Transmission Power Line (다양한 노출 매트릭스를 통한 송전선로 주변과 비 주변 거주 초등학교 학생의 극저주파 자기장 노출량 평가에 관한 연구)

  • Kim, Yoon Shin;Hyun, Youn Joo;Choi, Seong Ho;Lee, Chul Min;Roh, Young Man;Cho, Yong Sung;Hong, Seung Cheol
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.334-345
    • /
    • 2006
  • The objectives of this study were to analyze and compare 24 hrs personal exposure levels of MF at microenvironments such as home, school, educational institute, internet pc game room, transportation, and other places according to time activity patterns using various metrics for children attending the primary schools located near and away from the power lines, and to characterize the major microenvironments and impact factors attributed personal exposure level. The study was carried out for 44 children attending a primary school away from the lines(school A) and 125 children attending a school away from 154 kV power lines(school B), all who aged 12 years and were 6 grade, from July 2003 to December 2003. All participants filled in a questionnaire about characteristics, residence, use of electrical appliances and others. Children wore a small satchel in which EMDEX II and Lite (Enertech, Co. Ltd) and a diary of activity list for period of registration in 20 minutes blocks. All statistical calculations were made with the SAS System, Releas 6.12. The summary of results was presented below. First, about the characteristics of subjects, there no differences between two groups. The subject almost spent about 56 % of their time at home and about 20~25 % of their time at school. Fifty percent of children spent 2 hours at private educational institutes. Second, the personal exposure measurements of children in school B was statistically higher than those of children in school A by various metrics such as arithmetic mean, geometric mean, percentile(5, 25, 50, 75, 95), maximum, rate of change metric, constant field metric. The arithmetic and geometric mean magnetic fields during the time the children were at school B were 0.98 and $0.86{\mu}T$ and were about 23 times higher than those of children were at school A. In conclusion, the significant major determinants of personal exposure level is the distance from the power line to microenvironments.

Time-activity Pattern Assessment for Korean Students (한국 학생들의 시간활동 양상 평가)

  • Ryu, Hyeonsu;Yoon, Hyojung;Eom, Igchun;Park, Jinhyeon;Kim, Sunshin;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.143-152
    • /
    • 2018
  • Objectives: The purpose of this study was to provide basic data for air pollutant exposure modelling and understanding the contribution of respective microenvironments by assessing the time-activity patterns of Korean students according to variables such as grade, sex, weekday, and weekend. Methods: In this study, we compared the residential time of 521 (both weekday and weekend) lower elementary students, 1,735 (1,054 on weekdays, 681 on weekends) upper elementary students, 2,210 (1,294 on weekdays, 916 on weekends) middle school students, and 2,366 (1,387 on weekdays, 979 on weekends) high school students in different microenvironments according to grade, sex, weekday, and weekend. We used data from the 2014 Time-Use Survey by the Korean National Statistical Office for upper elementary students through high school students, and surveyed time-activity patterns of 521 lower elementary students aged 7-9 years. Each microenvironment was divided into indoor, outdoor, and transport. Indoor environments were divided into home, school, and other places. In addition, the results of previous studies were compared to this study. Results: Weekday time-activity patterns of Korean students indicated that lower elementary students spent $16.02{\pm}2.53hr$ in the home and $5.37{\pm}2.32hr$ in school. Upper elementary students spent $14.11{\pm}1.79hr$ in the home and $6.27{\pm}1.37hr$ in school. Middle school students spent $12.83{\pm}2.22hr$ in the home and $7.48{\pm}1.88hr$ in school. High school students spent $10.65{\pm}2.86hr$ in the home and $10.23{\pm}2.86hr$ in school on weekdays. High school students spent the least amount of time in the home and the most time in school compared to other grades Conclusions: Students spent most of their time indoors, including in the home, school, and other indoors. On weekdays, as the grade increases, home residential times were decreased and school residential times were increased. Differences in time-activity patterns according to sex were not found for either weekdays or weekends. It is estimated that Korean students could be affected by school indoor air quality. High school students could be most affected by school indoor air quality since they spent the most time at school.

Estimation of Personal Exposure to Air Pollutants for Workers Using Time Activity Pattern and Air Concentration of Microenvironments (시간활동 양상과 국소환경 농도를 이용한 근로자의 유해 공기오염물질 노출 예측)

  • Lee, Hyunsoo;Lee, Seokyong;Lee, Byoungjun;Heo, Jung;Kim, Sunshin;Yang, Wonho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.436-445
    • /
    • 2014
  • Objectives: Time-activity studies have become an integral part of comprehensive exposure assessment and personal exposure modeling. The aims of this study were to estimate exposure levels to nitrogen dioxide($NO_2$) and volatile organic compounds(VOCs), and to compare estimated exposures by using time-activity patterns and indoor air concentrations. Methods: The major microenvironments for office workers were selected using the Time-Use Survey conducted by the National Statistical Office in Korea in 2009. A total of 9,194 and 6,130 workers were recruited for weekdays and weekends, respectively, from the Time-Use Survey. It appears that workers were spending about 50% of their time in the house and about 30% of their time in other indoor areas during the weekdays. In addition, we analyzed the time-activity patterns of 20 office workers and indoor air concentrations in Daegu using a questionnaire and time-activity diary. Estimated exposures were compared with measured concentrations using the time-weighted average analysis of air pollutants. Conclusions: According to the time-activity pattern for the office workers, time spent in the residence indoors during the summer and winter have been shown as $11.12{\pm}2.20$ hours and $12.48{\pm}1.77$ hours, respectively, which indicates higher hours in the winter. Time spent in the office in the summer has been shown to be 1.5 hours higher than in the winter. The target pollutants demonstrate a positive correlation ($R^2=0.076{\sim}0.553$)in the personal exposure results derived from direct measurement and estimated personal exposure concentrations by applying the time activity pattern, as well as measured concentration of the partial environment to the TWA model. However, these correlations were not statistically significant. This may be explained by the difference being caused by other indoor environments, such as a bar, cafe, or diner.