• Title/Summary/Keyword: exponential functions

Search Result 360, Processing Time 0.02 seconds

THE DIMENSION REDUCTION ALGORITHM FOR THE POSITIVE REALIZATION OF DISCRETE PHASE-TYPE DISTRIBUTIONS

  • Kim, Kyung-Sup
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2012
  • This paper provides an efficient dimension reduction algorithm of the positive realization of discrete phase type(DPH) distributions. The relationship between the representation of DPH distributions and the positive realization of the positive system is explained. The dimension of the positive realization of a discrete phase-type realization may be larger than its McMillan degree of probability generating functions. The positive realization with sufficient large dimension bound can be obtained easily but generally, the minimal positive realization problem is not solved yet. We propose an efficient dimension reduction algorithm to make the positive realization with tighter upper bound from a given probability generating functions in terms of convex cone problem and linear programming.

A Lubrication Analysis of Gas Mechanical Face Seals using a High-Order Shape Function (고차 형상함수를 이용한 가스 미케니컬 페이스 시일의 윤활해석)

  • 이안성;양재훈;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.204-211
    • /
    • 2001
  • For the treatment of high compressibility number in the Reynolds equation, a new class of exponential high-order shape functions has been recently introduced in the literatures. In this paper a FE lubrication analysis method of high speed gas mechanical face seals is developed, implementing these shape functions. Their validity and usefulness are presented using 1-D gas bearing models. And a validation of developed 2-D analysis code is shown with a gas flat and spiral groove face seal models.

  • PDF

Analysis of the Pulse Distortion on Tapered Microstrip Lines (테이퍼형 마이크로스트립 선로에서 펄스의 왜곡 특성 분석)

  • Kim, Gi-Rae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.45-51
    • /
    • 2000
  • The distortion of an electrical pulse, which has a rise/fall time due to the dispersion and the reflection, on tapered microstrip lines has investigated In time domain. The voltage and current transfer functions are shown for the tapered line. The dispersion distortion obtained by using these trans(or functions are represented for the nonideal square pulse along the triangular, Tchebycheff and exponential tapered lines, and analyzed the influence of the reflection and the frequency dispersion on the distorted voltage wave in the tapered lines. The observed overshoot in front of the distorted wane is caused due to the frequency dispersion and the sustained tail of that comes from the reflection in the tapered line.

  • PDF

Polynomial Type Price Sensitive Electricity Load Model (다항식 전력가격부하모형)

  • 최준영;김정훈
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.79-89
    • /
    • 2003
  • A research about finding a new electricity load model that is sensitive to the price of electricity is conducted. This new model i5 polynomial type price sensitive electricity consumption model, while former electricity consumption models have exponential terms or statistic terms. The pattern of electricity consumption of each electricity using devices were identified first, then the proportion of the devices at buses or nodes are investigated, finally weighted sum of electricity consumption and the proportion makes the load model or consumption model of electricity at one bus or node. This new model is easy to use in the simulations or calculations of the electricity consumption, because the arithmetic of functions with polynomial terms are easy compared to the functions with transcendental terms.

Flexural free vibration of cantilevered structures of variable stiffness and mass

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.243-256
    • /
    • 1999
  • Using appropriate transformations, the differential equation for flexural free vibration of a cantilever bar with variably distributed mass and stiffness is reduced to a Bessel's equation or an ordinary differential equation with constant coefficients by selecting suitable expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. The general solutions for flexural free vibration of one-step bar with variable cross-section are derived and used to obtain the frequency equation of multi-step cantilever bars. The new exact approach is presented which combines the transfer matrix method and closed form solutions of one step bars. Two numerical examples demonstrate that the calculated natural frequencies and mode shapes of a 27-storey building and a television transmission tower are in good agreement with the corresponding experimental data. It is also shown through the numerical examples that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings and high-rise structures.

A Study on the Optimum Parameter Estimation of Software Reliability (소프트웨어 신뢰도의 적정 파라미터 도출 기법에 관한 연구)

  • Che, Gyu-Shik;Moon, Myong-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.1-12
    • /
    • 2006
  • Many software reliability growth models(SRGM) have been proposed since the software reliability issue was raised in 1972. The technology to estimate and grow the reliability of developing S/W to target value during testing phase were developed using them. Most of these propositions assumed the S/W debugging testing efforts be constant or even did not consider them. A few papers were presented as the software reliability evaluation considering the testing effort was important afterwards. The testing effort forms which have been presented by this kind of papers were exponential, Rayleigh, Weibull, or logistic functions, and one of these 4 types was used as a testing effort function depending on the S/W developing circumstances. I propose the methology to evaluate the SRGM using least square estimator and maximum likelihood estimator for those 4 functions, and then examine parameters applying actual data adopted from real field test of developing S/W.

  • PDF

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

THE SPACE OF FOURIER HYPERFUNCTIONS AS AN INDUCTIVE LIMIT OF HILBERT SPACES

  • Kim, Kwang-Whoi
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.661-681
    • /
    • 2004
  • We research properties of the space of measurable functions square integrable with weight exp$2\nu $\mid$x$\mid$$, and those of the space of Fourier hyperfunctions. Also we show that the several embedding theorems hold true, and that the Fourier-Lapace operator is an isomorphism of the space of strongly decreasing Fourier hyperfunctions onto the space of analytic functions extended to any strip in $C^n$ which are estimated with the aid of a special exponential function exp($\mu$|x|).

A unified method for stresses in FGM sphere with exponentially-varying properties

  • Celebi, Kerimcan;Yarimpabuc, Durmus;Keles, Ibrahim
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.823-835
    • /
    • 2016
  • Using the Complementary Functions Method (CFM), a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material (FGM) is presented. The mechanical properties are assumed to obey the exponential variations in the radial direction, and the Poisson's ratio is assumed to be constant, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. In the present paper, a semi-analytical iterative technique, one of the most efficient unified method, is employed to solve the heat conduction equation and the Navier equation. For different values of inhomogeneity constant, distributions of radial displacement, radial stress, circumferential stress, and effective stress, as a function of radial direction, are obtained. Various material models from the literature are used and corresponding temperature distributions and stress distributions are computed. Verification of the proposed method is done using benchmark solutions available in the literature for some special cases and virtually exact results are obtained.

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.